
An Open Framework for Cluster ing

Alan Robertson − IBM Linux Technology Center − <alanr@unix.sh> / <alanr@us.ibm.com>

ABSTRACT

One of the most commonly identified features which is felt to be necessary for
LinuxTM to be considered "enterprise−ready" is High−Availability. High−Availabil−
ity (HA) systems provide increased service availability through clustering techniques.
Clustering is also used to create High−Performance Clusters (HPC). These two differ−
ent techniques have many things in common, but little has been done to unify them.

In the case of HA clusters, several open source high−availability projects have
been created. These projects were created independently for complex historical reasons,
not because of political, philosophical or licensing differences. Because of this, they
originally shared no code at all. This minimized the benefits of the open source model,
which both encourages and benefits from the sharing of common components. However,
many of them share the need for a component for resetting cluster members. A compo−
nent was created for filling this need with the specific intent of being a common
component across open HA systems. This was successful beyond all expectations, and
this component has become standard across most open source HA systems. All of the
projects involved have benefitted from this commonality. Although this component is
currently used primarily in HA clusters, HPC systems also have need of this capability.

In light of this success, the author began to search for more ways to extend these
benefits across a broader set of cluster infrastructure components. Towards this end, we
have created an architecture for an open cluster framework for both HA and HPC sys−
tems, and have begun to implement it. Although this framework has its origins in
High−Availability systems, it is engineered to be applicable to high−performance clus−
ters as well. This paper provides some background on open source clustering, defines
this cluster framework, outlines its goals, describes key design elements of this frame−
work, and details progress in implementing them.

Introduction

High−Availability failover techniques are com−
monly viewed as critical components in the set of
enterprise capabilities of an operating system. In this
regard, Linux is no exception, and it is well under−
stood that these capabilities are essential for its wide
acceptance in the enterprise server arena.

As a result, several different open source High−
Availability projects have come into being. For the
most part, these projects are separate for historical
reasons, not for philosophical, political, or licensing
reasons. Each of them has their own user community
whom they faithfully support, and who expect to con−
tinue to receive support. They are willing to share
components and software, but they find it difficult to
do so, because they have no common infrastructure or
assumptions which would enable this sharing. The
STONITH module is an exception, since it was de−
signed from the beginning to be a common
component. It is the success of this common compo−
nent which has prompted the work being described.

It should be understood that every cluster requires a

common set of capabilities. These capabilities are of−
ten be implemented in different ways, but
fundamentally serve the same purpose.

If these components were fit into a common com−
ponent framework, then they could be assembled into
many different cluster systems, each of which would
fulfill different requirements in uniquely different
ways. For example, one could imagine a small, em−
bedded cluster system with minimal capabilities, or a
large heavy−duty clustering system, and many in be−
tween which could be assembled out of components
which fit into this framework.

In many respects, this creates a new class of config−
urable clustering systems, capable of meeting many
different classes of needs well. Each of the users of
the framework could select components from the proj−
ect framework set, and assemble them into clusters
which uniquely meet the needs of their particular cus−
tomers. In many ways, this provides the best of the
proprietary and open worlds − allowing competitors to
differentiate themselves from each other, yet at the
same time allowing them to share infrastructure for
those components which do not have to be customized
to meet the unique needs of their particular customer

set. This maximizes both the benefits of the open de−
velopment model, and the opportunities for
competition in meeting the needs of unique market
and technology niches

It also provides an ideal vehicle for research into
cluster systems − since it allows researchers to con−
centrate on their area of interest and simply use
components from the framework which they need for
their research, but are not their area of concentration.

Background

As was mentioned earlier, there are several different
Open Source clustering systems which were developed
independently. However, they are all licensed under
the GNU GPL. The author was involved with the de−
velopment of two of them at one point in time, and it
became clear that both needed a Linux implementation
of a reset mechanism. So, a class of loadable modules
was created for a reset mechanism. This proved to be
quite successful, and has been contributed to by sev−
eral different HA projects, not just the original two.
The author actually only wrote one of the modules,
and around a half−dozen more have been written and
contributed by several different organizations.

This allows all the projects to avoid re−inventing
the wheel, and maximizes the benefits of the open
source model, as the "eyeballs" and developers of the
community are spread across fewer lines of code, giv−
ing a more full−featured, better result. Although this
subsystem was small and its goals modest, it was re−
markably successful, and has become the de−facto
Linux standard for resetting cluster nodes.

There were several things which contributed to
making it so strikingly successful. These include:
� Clean design. The design of the modules was

clean, simple, easy−to−understand, and separate
from involvement with the surrounding soft−
ware. This made it an obvious choice to adopt, and
easy to integrate into various cluster systems.

� Loadable modules (plugins). Since any given in−
stallation typically only used one reset mechanism
at a time, having a module loading system made
for cleaner system interactions, and has minimized
system bloat. This has also led to a largely object−
oriented approach to these modules, which en−
hanced the clarity of the design.

However, there is one notable weakness in the cur−
rent STONITH system. The configuration of
STONITH objects is awkward, and largely ill−suited
for user−friendly configuration using a GUI. This re−
sults from a design decision to use an unstructured
string to represent the data to configure the STONITH

objects. This data required to configure STONITH
objects (and indeed, most objects) requires richer se−
mantics than a simple unstructured string to properly
communicate the structure of this information to a
GUI or other configuration system.

In addition to the lessons learned from the STO−
NITH libraries, there is another attribute of the
heartbeat software which was influential in this design
as well. In heartbeat, all messages are sent as name−
value pairs similar to the UNIX shell environment. As
was explained in [ROB00], this helps significantly
both with portability across machine types, and with
cluster version management interactions. However, it
is limited, in that it is incapable of dealing with more
complex structured data such as lists. As a result, it is
not powerful enough to serve as a unifying mechanism
in a general cluster framework, or powerful enough
that all clients could use it for their control messag−
ing..

Creating A Framework

The term "framework" was chosen instead of the
word "design" for this project. The term framework is
used here to mean a collection of common infrastruc−
ture components and APIs which permit one to create
a cluster system out of components which fit in (or
conform to) the framework.

In my view these APIs and infrastructures should be
highly neutral (or agnostic) towards all the following
things:
� Processor architectures, Operating systems, envi−

ronments, and versions.
� Programming languages
� Cluster implementation strategies (shared storage,

shared−nothing, etc.).
� HA versus HPC clustering

It is important to note that the infrastructure itself
should not implement any cluster capabilities − but
provide a context for creating cluster capabilities.
This is what allows the framework to be agnostic with
respect to cluster implementation strategies. Note that
some of the infrastructure may interact closely with or
require certain cluster components. For example they
might use or require basic communication services.
These interactions are acceptable (and often neces−
sary), but can increase the software
size/weight/complexity of the smallest possible work−
ing cluster node.

Although the framework itself will maintain this
strict neutrality, it is not necessary particular imple−
mentations of cluster components retain this neutrality.

For example, it is acceptable to implement a cluster
component which uses a driver module which is only
available on Linux on Power PC platforms. What is
important is that the API is designed so that some form
of its function can be performed in every target envi−
ronment.

Some cluster components may only be usable in a
master/slave environment, while others may assume an
equal peerage arrangement. Such diversity is some−
times necessary in the implementation of components.
However, it is not acceptable for these implementation
choices to show through to APIs which define its in−
teractions with the other cluster elements.

Goals

The goals of this framework have been heavily in−
fluenced by the experiences described earlier.

1. Encourage sharing of components, and increase the
number of shared subsystems beyond the STO−
NITH subsystem.

2. Allow each of the various HA projects to use com−
ponents from the framework without requiring
them to abandon their current customer set.

3. Allow the components to be adopted individually,
with minimal expectations regarding the remainder
of the framework.

4. Keep the design of individual component interfaces
clean and "value−neutral". Make sure the APIs do
not assume things about the rest of the cluster sys−
tem and its implementation. In particular, avoid
taking sides on implementation methods and tech−
niques (like shared storage, versus shared−nothing
clusters).

5. Make extensive use of loadable modules for
framework components and provide a single, gen−
eral module loading environment. This is essential
given the desire to allow solutions to be assembled
from sets of components which come from a di−
verse range of environments.

6. Provide a common infrastructure for configuring
modules which does not require adding new code
to the GUI to configure new types of plugins. I use
the term self−configuring plugins for this property.

7. Use a simple XML subset for the external repre−
sentation of all data. Any time data passes out of
the memory of a process onto disk or across the
network to another cluster member, XML will be
the preferred data representation method. This
provides the advantages attributed to name,value
pairs, yet also allows for sending of much more
complex structured data, at the cost of larger and

more complex code for encoding and decoding of
messages. This complexity is potentially formida−
ble. If XML is used for all messages, then it will
become necessary to lock the XML encoding/de−
coding libraries in memory. Most libraries which
support full XML are many times larger than the
entire heartbeat cluster system. Some are fully 10
times larger. Locking such a large piece of code
into memory is undesirable. However, a simple
subset of XML can be easily parsed in a few dozen
kbytes of code.

8. All core software will be written in ’C’ − not C++
or an interpreted language. Heartbeat (which is
written in ’C’) is small and lightweight, has been
extremely stable with virtually no memory leaks or
other stability issues.

Infrastructure Components

There are several components of the infrastructure
of this framework which need to be completed before
ork on the components can take take place in full
force.

XML marshalling / demarshalling

This subsystem takes data structures in memory,
translates them into XML for transmission to another
process or storing in a file, and conversely takes this
XML and translates it back into data structures. The
initial implementation is oriented towards the Glib
collection data structures, but the design will allow
plugging in encoders/decoders for any kind of data
structure into the infrastructure.

The decoding (parsing) code will work only with a
restricted subset of XML. In some ways, XML is a bit
like Perl: "There’s more than one way to express it in
XML". Our subset is grammatically simple, yet pow−
erful enough, without so many possible ways of
expressing information, yet retaining the ability to
represent any kind of data which can be structured hi−
erarchically (as XML requires).

Because the Glib collection data structures allow
arbitrary types for their elements, it is necessary to use
types which have a type wrapper around them in order
to tell whether a list element is a string or an associa−
tive array (hash table) or another list. The term
"wrapped structures" will be used here for this kind of
structure.

The sample text in the paragraphs following illus−
trate two possible encodings of the data. The current
alternative favorite is the data representation used by
XML−RPC. Both encodings will be illustrated below.

Below is an example of a Glib Glist of strings as
encoded into XML:

<L>

Thi s one i s f i r st </ LI >

Thi s one i s second</ LI >

Thi s i s t he l ast st r i ng</ LI >

</ L>

Below is an example of a Glib GHashTable
associative array with strings for keys and values:

<AL>

<LI key=" l i nux−ha" / >l i nux−ha. or g/

<LI key=" f ai l saf e" >

oss. sgi . com/ pr oj ect s/ f ai l saf e</ LI >

<LI key=" ki mber l i t e" >

oss. mcl i nux. com/ pr oj ect s/ ki mber l i t e/
</ LI >

</ AL>

Below is an example of a GHashTable with a string
for one value, and a list as one of its values

<AL>

<LI key=" t t y" >/ dev/ t t yS1</ LI >

<LI key=" por t s" >

<L>

node1</ LI >

node2</ LI >

</ L>

</ LI >

</ AL>

Below is an example of a Glib Glist of strings as
encoded into XML−RPC format:

<met hodCal l >

<met hodName>subsyst em/ met hod

</ met hodName>

<par mams><par am>

<ar r ay><val ue><st r i ng>f i r st </ st r i ng>

</ val ue>

<val ue/ ><st r i ng>second</ st r i ng>

</ val ue>

<val ue/ ><st r i ng>l ast </ st r i ng>

</ val ue>

</ ar r ay>

<par am>

</ par ams>

</ met hodCal l >

Below is an example of a Glib GHashTable
associative array with strings for keys and values.
This example is encoded using the XML−RPC format:

<met hodCal l >

<met hodName>subsyst em/ met hod2

</ met hodName>

<par mams><par am><st r uct >

<member ><name>l i nux−ha</ name>

<val ue><st r i ng>l i nux−
ha. or g/ </ st r i ng></ val ue></ member >

<member ><name>f ai l saf e</ name>

<val ue><st r i ng>oss. sgi . com/ pr oj ect s/ f
ai l saf e</ st r i ng></ val ue></ member >

<member ><name>ki mber l i t e" </ name>>

<val ue><st r i ng>oss. mcl i nux. com/ pr oj ec
t s/ ki mber l i t e/ </ st r i ng></ val ue>

</ member >

</ st r uct >

</ par am>

</ par ams>

</ met hodcal l >

Below is an example of a Glib GHashTable with a
string for one value, and a list as one of its values. It
is encoded with the XML−RPC encoding.

<met hodCal l >

<met hodName>subsyst em/ met hod3

</ met hodName>

<par ams><par am><st r uct >

<member ><name>t t y</ name>

<val ue><st r i ng>/ dev/ t t yS1</ st r i ng>

<member ><name>por t s</ name>

<val ue>

<ar r ay>

<dat a>

<val ue><st r i ng>node1</ st r i ng></ val ue
>

<val ue><st r i ng>node2</ st r i ng></ val ue
>

</ dat a>

</ ar r ay>

</ st r uct >

</ par am>

</ par ams>

</ met hodCal l >

It seems likely that this encoding/decoding will be
implemented as a loadable module, allowing for some
choice in these matters, possibly including non−XML
representations.

Module Loading

This subsystem has the job of loading and unloading
modules, and registering and unregistering plugins.

The term module and plugin are often used inter−
changably, but have distinct meanings in this
document.

In this paper, we use the term module to mean a
shared library which can be loaded at run time and in−
voked. From the point of view of the module loading
software, all modules are basically identical, and are
treated as identical.

The term plugin is used here to denote a set of ca−
pabilities which a module registers with the
PluginHandler for their particular plugin type. This
set of capabilities is the same for every plugin of a
given plugin type, but different from the capabilities of
a different plugin type. It is these capabilities (or
APIs) which define the components of the system.

There is only one built−in plugin type, the Plugin−
Handler plugin type. It registers PluginHandlers.
Each PluginHandler then registers itself as being the
handler for those types of plugins which it is prepared
to manage. For example, if a module implements a
STONITH plugin, it registers itself with the Plugin−
Handler which manages STONITH plugins. If this
PluginHandler is not already loaded, it is then loaded

automatically. If there is no such PluginHandler, reg−
istration of the plugin will fail.

Each loadable plugin exports only those functions
which are defined by its API, because the module
loading system implements explicit interface export−
ing.

Self−Configuration

Many plugins will require configuration for proper
operation. Most of these plugins will use the self−
configuration API to obtain their configuration infor−
mation. This API allows a plugin to present
information to GUI to allow the GUI to collect the in−
formation and provide it back to the plugin so it can be
properly instantiated. Combined with the basic plugin
capabilities, powerful sets of self−configuring objects
can be added to the system without writing new user
interface software.

The self−configuration API provides the following
basic capabilities:
� Configuration Metadata query
� Configuration default query.
� Construct object with Configuration
� Current Configuration Query
� Modify object configuration

Each of these different capabilities will be discussed
in turn.

Configuration Metadata query

This is the most complex and interesting of the ca−
pabilities. The API return result is a set of metadata
describing the information which must be provided to
configure an object of the type in question.

From the top level view, the metadata is structured
as a list of fields, each of which has a variable number
of attributes.

For example, any given field will have some of
these attributes:
� fieldname − the internal name of the field
� label − the user−visible label for the field. This is

returned according to the requested locale
� isar ray − true if the field is an array field
� class − simple or struct. Simple is the norm, but

struct indicates that the field is a repeating field. In
this case, the aggregatetype fieldset is an array of
field values.

� basictype − the lowest−level (or most primitive)
type of the field. Examples of basic types are
string, boolean, integer, enumeration, etc.

� specialtype − the most semantic−rich type for the
field

� length − number of displayable characters allowed
in the field.

� regex − a regular expression for validating the
field

� shor t_text − a short text explanation of the field,
suitable for popping up automatically. It is pro−
vided for the requested locale.

� long_text− a short text explanation of the field,
suitable for bringing up on demand. It is provided
for the requested locale.

� minval − the minimum allowable value for the
field

� maxval − the maximum allowable value for the
field

� enumset − a list of all possible values which the
field is allowed to have.

� fields − an array of metadata fields making up the
fields of a structured value.

As an example, if you have a field named IP which
is an IPv4 address, it might have the following attrib−
utes:

(fieldname, "IP")
(label, "IP address")
(basictype, "string")
(specialtype, "IPv4")
(length, 15)
(regex, "^[0−9]+\.[0−9]+\.[0−9]+\.[0−9]")
(short_text, "IP address of power switch")
(long_text, "Enter the IP address assigned to the

BayTech power switch")

The purpose for having two different field types is
to allow configuration programs to support configuring
modules which use a newer version of the API spec
than the GUI implements. The expectation, is that the
GUI will fall back to the primitive type and other
fields (such as the length, and regex) if it doesn’ t rec−
ognize the high−level type to allow it to do the best
job it can.

In addition to the simpletypes described above, a
data element can be an array of simpletypes, or an ar−
ray of structures. If an information item is an array,
the following attributes will be supplied.:

� minelem − the minimum number of elements
which allowed in the array.

� maxelem − the maximum number of elements al−
lowed in the array.

If an item has a class of struct, then only the field−
name, label, isarray, class, shorttext, longtext, and
fields attributes will be used. If the item is also an ar−
ray (meaning an array of structures), then the array
attributes will also be used.

Remote Procedure Calls

In a cluster, there is a need for a higher−level para−
digm for communication than simply sending
messages. The applications have many such forms as
described by the Application−Level APIs. However,
the internals of the cluster itself also need to commu−
nicate with each other, and with administration
utilities etc.

The framework will use several related forms of re−
mote procedure calls to provide this structure.
However, we still want all the version−compatibility
features that XML provides. We will use the data for−
mats described by the XML−RPC specification, and
adapt them for use in a cluster. There will be three
supported forms of RPC in this cluster.
� "Normal" RPC − a single request sent to a single

node in the cluster with a mandatory response with
a completion result − as described in the XML−
RPC specification. Rather than relying on HTTP
for the transport as described in the specification,
we will use the cluster basic communication serv−
ices for message transport.

� "Multicast" RPC. In this case, a single request is
sent to a set of machines in the cluster (or the
whole cluster) for each to interpret.

� "Normal" RPC through an separately authenticated
external communication channel to a process
which can be outside the cluster. This will allow
us things like remote administration and monitor−
ing capabilities.

For RPC within the cluster, some kinds of calls will
not require a mandatory response with a completion
result. This is an essential extension to be able to per−
form certain kinds of cluster operations (notably leader
election).

These few simple extensions will allow cluster
components and cluster−aware applications to use a
simple RPC paradigm for their operations. This will
give a simple conceptual model to use as the basis for
implementing higher−level APIs and services.

Local Client−Server API

This local client−server API provides authenticated
access to such services as cluster components wish to
provide to other local applications. It provides client
registration services, authentication services, and inte−
grates with the basic RPC services as described above.
It enables building of APIs which allow processes to
receive services from cluster components.

Cluster System Components

General API goals

The design of the good APIs is probably the most
difficult and underestimated activity in the project. It
is the authors’ experience, that there are very few
really good APIs.

The following goals are common to the design of all
the APIs implemented by all the components:
� Implementation hiding − APIs should generally not

require any particular method of implementation,
or unnecessarily reveal or restrict properties of the
components which implement it or other APIs.

� Generality − the API itself should reflect the nature
of the concept it embodies, not the restrictions of a
particular implementation.

� Simplicity − Each API should be as simple as it
can to provide the needed function, but no simpler.
This is parallel to Albert Einstein’s famous quote
about theories: A theory should be as simple as it
can be, but no simpler.

� Data (structure) hiding − APIs should not reveal
the contents of data structures unnecessarily to
their users.

� Object orientation − Most APIs should reflect
natural and obvious system concepts and objects
and the operations which are useful to perform on
them. If a set of interfaces does not, it may not
deserve to be elevated to a documented API.

� Decomposition − Sometimes an object should be
decomposed into two layers, so that the bottom
level layer can be easily understood and imple−
mented. For example, in the system reset feature,
two layers help the implementation − one to di−
rectly reflect the hardware capabilities, and one to
reflect the needs of the cluster system.

� Request identifiers − some APIs functions can eas−
ily be changed from being several different
requests with the same parameter to a single re−
quest with a function code (opcode). This makes

the API extensible, and easily added to in the fu−
ture.

� Binary encoding − APIs should avoid encoding in−
formation into bits in the interface. Of course,
component implementations are free to do this as
much as they wish.

� Language/machine independence − APIs should be
independent of OS, language and machine type,
and the API itself should not assume a homogene−
ous cluster configuration.

A few additional thoughts on writing good inter−
faces can be found in the libtool manual: :
http://www.gnu.org/software/libtool/manual.html#Li−
brary%20tips

Initialization / Configuration

Basic Communication

The basic communication services will provide
guaranteed packet delivery and packet content authen−
tication to cluster modules, along with basic node
status services. In the normal course of events, pack−
ets are encoded by the encoding plugin, and signed
using an authentication plugin before being sent over
the wire. The initial communication plugin module
will likely be based on the heartbeat code.

Authentication Services

The authentication services which the cluster re−
quires are to be able to digitally sign packets, and also
to authenticate them. Several plugins of authentica−
tion services will likely be based on heartbeat’s
authentication code.

Marshalling/Demarshalling services

Packet Encoding (compression/encryption) services

Membership Services

Group Services

Cluster Management

Resource Management

Resource Monitor ing

Application−Level APIs

GUI Configuration / Monitor ing

Higher−Level cluster APIs

Several different higher−level cluster APIs will be
available for cluster−aware applications to use. This
will likely include:
� Ordered messaging − guarantee that every member

of the cluster receives the messages in a message
stream in the same order

� Barrier services − guarantees that every member of
the cluster has acknowledged arriving at a barrier
before any are allowed to pass it.

� Transactions − guarantees that the entire cluster
performs a transaction together or not at all.
Variations include 2−phase commit transactions,
and n−phase transactions.

� RPC − client−level cluster RPC will also be pro−
vided.

Implementation Plan

The current thinking about the general plan of at−
tack for completing the implementation of this
framework is as follows:

1. Implement Infrastructure Components

2. Convert STONITH modules to self−configuring
plugins.

3. Implement FailSafe (RHINO) interface to self−
configuration API

4. Tune and adjust infrastructure as a result of experi−
ence gained above. This will act as a proof−of−
concept for the framework infrastructure.

5. Define APIs for other components, and implement
them − starting with communication and cluster
membership.

Implementation Status

At this writing, the module−loading infrastructure
and the XML encoding/decoding are well underway,
and should be completed before the final copy of this
paper is submitted. The design of the self−configuring
object system is underway, and should be completed,
and implementation begun before the final copy of this
paper is submitted, and hopefully a lot more as well.

Future Plans

Talk here about the plan to involve the community,
and briefly discuss the project plan highlight the URL,
and to do list on the web and how it’s open to every−
one, and we hope to get lots of people participating in
the project.

Conclusions

Acknowledgments

Colorado School of Mines, the XML students, and
lots and lots of other folks... David Brower initially
advocated RPC as a basic paradigm and helped clarify
the issues surrounding basic communication and the
RPC paradigm. Also thanks to Rusty of SGI.

Everything from here to the end is not
r ight yet ;−) This is mostly text from my

last year ’s ALS paper.

To Learn More

The Linux−HA web site can be found at [Rob01].
Heartbeat can be downloaded (in source or RPM for−
mat) from the Linux−HA web site download page at:
http://linux−ha.org/download/. Information on sub−
scribing to the various Linux−HA mailing lists can be
found on the contact page at: http://linux−ha.org/con−
tact/. The Linux FailSafe project is described in detail
in [Vas00].

References

[Milz99] Milz, Harald: "The Linux High
Availability HOWTO". http://meta−
lab.unc.edu/pub/linux/ALPHA/linux

−ha/High−Availability−
HOWTO.html

[Phi98] In Search of Clusters, by Gregory F.
Pfister, 2nd Edition 1998, Prentice
Hall PTR

[Ball00] Ballinger, Rusty, "The RHINO GUI
Infrastructure.
http://oss.sgi.com/projects/rhino/

[Rob01] Robertson, A. L.,: "The High−
Availability Linux Project".
http://linux−ha.org/

[Twe00] Tweedie, S. C.,: "Barrier Opera−
tions". http://linux−
ha.org/PhaseII/WhitePapers/sct/bar−
rier.txt

[Vas00] Vasa, M.,: "The Linux Fail Safe
Project". http://oss.sgi.com/proj−
ects/failsafe/

Need to add references for XML−RPC, for OMS
plugins, Kimberlite, Glib, etc.

Final dummy Alan Robertson the last refer

