
Resource fencing using STONITH
Alan Robertson

IBM Linux Technology Center
13750 Bayberry Drive
Broomfield, Colorado, 80020

alanr@us.ibm.com

ABSTRACT. Clusters of computers which share resources must take steps to protect the
integrity of these shared resources (particularly shared storage) in the event of the failure
of a node in the cluster. The term which is used for this protection is "fencing". There are
classically two different fencing techniques which are commonly used. This article explains
the rationale behind fencing, and presents the details of a technique which we refer to as
STONITH (Shoot The Other Node In The Head), along with its use and implementation in
the High−Availability Linux project.

RƒSUMƒ . L’ensemble des consignes rassemblées ci−dessous s’organise en trois rubriques.
La rédaction remercie les auteurs pour le strict respect qu’ ils accorderont à ces
dispositions. La taille de ce résumé ne doit pas dépasser une dizaine de lignes. Il est à
composer en Times corps 9 italique, interligné 11 points. Un résumé en anglais doit
l’accompagner.

KEY WORDS : clusters, fencing, high−availability, I/O, integrity

MOTS−CLÉS: un maximum de mots significatifs, en français et en anglais, doivent etre isolés
sous forme de mots−clés.

Calculateurs Parallèles Journal

2 Calculateurs Parallèles Journal

1. Introduction

When a cluster of computers shares resources, there are certain rules which
have to be followed regarding the sharing of these resources so that the integrity of
these resources is protected. For example, a normal (non−cluster) filesystem
cannot be mounted simultaneously on more than one node in the cluster at a time.
When this violation of constraints occurs, the results are normally catastrophic −
the data on the filesystem is generally destroyed in the process. This violates an
important rule high−availability (and life as well): "First, do no harm" [PFI98].
Other types of resources (such as IP addresses) have similar integrity rules − even
if the effects of the integrity violations are rarely as severe. Throughout the rest of
this paper the examples will be largely shared disk examples, although the
conclusions apply to other types of resources as well.

When clusters are operating normally, there are simple protocols which are
designed to eliminate this possibility. One such mechanism is quorum − in which
shared resources cannot be used without the agreement of the majority of the nodes
in the cluster. The much more interesting case occurs when a cluster node which is
using a shared resource dies (or appears to die).

At first glance it might seem to be sufficient for the cluster to realize that it still
has a majority vote and assign the shared resource to another cluster member and
continue from there. After all, if the cluster node is dead it isn’ t using any cluster
resources. If it isn’ t actually dead, it will notice that it no longer has quorum, and
stop using the resource and things will all work out. In practice, this method often
works fine for a while in a properly configured cluster. It is unfortunate that it
often works, because this can be confused with reliably working − which is quite a
different matter. Given the severity of the damage done, it must always work − as
recovering from loss of a filesystem is often difficult, time−consuming, and costly
in lost business and customer confidence.

2. Why Quorum Isn’ t Enough

Quorum is a software−level protocol for sharing resources in a cluster which
guarantees that resources are allocated correctly when all nodes in the cluster are
operating normally. Unfortunately, it cannot guarantee that resources which were
assigned to cluster nodes which are no longer accessible will be released in any
particular time frame. When a node cannot be contacted, it is often informally
referred to as being dead. However, the only thing which is actually known for
certain about the node is that it is incommunicado. All else is speculation.

The problem is that the incommunicado node has shared resources, and we
want it to give them up so the cluster can reassign them to another node or
otherwise recover them so it can continue providing service. By definition, one
cannot ask the node to give up the resource − all communications are inoperable,
and indeed, the node itself is often quite sick, or dead.

It is occasionally asserted [LHA01] that once one has waited a period of time,
that one can assume that the node is no longer using the resource because it is
either dead or has given up the resource voluntarily through quorum. Although this
may sound reasonable at first, there are many counterexamples.

For example, someone with administrative privileges or physical access to the
machine can stop the machine from processing either deliberately, or accidentally.
If a system programmer has entered the kernel debugger then received a phone
call, or simply gone off to tea, and left the machine without restarting it − it will be

Resource Fencing using STONITH 3
completely unresponsive for an indefinite period of time, and also quite capable of
fully recovering. If there was I/O queued to the shared disk and the programmer
resumes from the debugger, the kernel would typically write out this data
immediately − before any user−level process is scheduled, and loss of quorum can
be detected.

Severe resource shortages, like a "paging storm" can cripple a system
indefinitely. Although operating systems try to limit system memory shortages,
they sometimes fail to do so, and events like misbehaving applications or ongoing
denial−of−service attacks can cripple a machine in a very similar way − with
essentially identical results. The system is unable to do any useful work for an
indeterminate period of time. If misbehaving applications are killed, or the denial−
of−service attack stops, the system will continue on as before − and some amount
of time will elapse before the system notices it has lost quorum. During this
interval, data can be written to the disk.

It has also sometimes been asserted [LHA01] that if one controlled enough
layers of the system software and made them all "cluster−aware" one could
eventually reach the place where such effects could be eliminated by software
alone.

However, without also controlling the hardware, one cannot assume that the
disk controller doesn’ t have data queued up to the disk device, and is simply
waiting for an interrupt to be serviced before writing it all to the disk. In this
modern, open environment of off−the−shelf components, this assumption of
dedicated hardware is usually inappropriate. In a highly dynamic open source
environment like LinuxTM 1, such an approach would seriously limit the usefulness
of such solutions, in addition to being difficult to manage on an ongoing basis.

3. Resource Fencing

From this discussion, it should be apparent that software−only approaches to
dealing with the problem are fraught with difficulties. The problem then is that one
must quickly and reliably eliminate incommunicado nodes’ access to shared
resources without their cooperation. The generic term for this limitation of access
is fencing −because hardware is used to build a conceptual fence between the node
and its shared resources.

There are two basic approaches to fencing: resource−based fencing, and system
reset (or STONITH) fencing. Resource−based fencing will be discussed first.

In resource−based fencing, a hardware mechanism is employed which
immediately disables or disallows access to shared resources. If the shared
resource is a SCSI disk or disk array, one can use SCSI reserve/release (or better
yet persistent reserve/release operations). If the shared resource is a fiber channel
disk or disk array, then one can instruct a fiber channel switch to deny the problem
node access to shared resources. In general, the errant node itself is left
undisturbed, and its resources are instructed to deny access to it. If the node is able
to later become part of a cluster with quorum, it will then go through the normal
channels to reacquire its resources.

This method has the following characteristics:
� It is minimally disruptive to the problem node
� It has to be implemented differently for each type of resource being protected

(SCSI disk, fiber channel disk, IP address, etc.)
� It requires cooperation from the OS, the device drivers involved, (depending on

the resource) the controller, and the device being protected.
� These interactions between application, OS, drivers, controller and resource

1 Linux is a trademark of Linux Torvalds

4 Calculateurs Parallèles Journal
firmware are sometimes complex and difficult to manage. In most cases, each
combination of hardware, firmware, drivers and software has to be extensively
tested and certified as being mutually compatible. This is, of course, an
ongoing expense.

� Booting of cluster members with shared root filesystems can be problematic. If
the system is locked out of shared filesystems when it leaves the cluster, this
can make it tricky to mount a shared root filesystem − even read only.

Resource−based fencing has often been used in proprietary clustering systems
where the hardware vendor is able to constrain the number of different versions of
drivers, firmware, software and disk units. Examples of systems which use this
approach are IBM’s HACMP, and Steeleye’s LifeKeeper.

STONITH fencing takes a completely different approach. In STONITH
systems, the errant cluster node is simply reset and forced to reboot. When it
rejoins the cluster, it acquires resources in the normal way. In many cases,
STONITH operations are performed via smart power switches which simply
remove power from the errant node for a brief period of time. In other cases, built−
in hardware (like Intel’s IPMI) on the cluster nodes is used.

The STONITH method has these characteristics:
� It is highly disruptive to the problem node
� It is universal − it operates on all resource types equally well, and

simultaneously
� It is very simple in concept and in practice
� There are virtually no support problems or version interactions to complicate

development, testing and maintenance
� Overall system availability is often helped by the reboot

Examples of cluster systems which use STONITH methods include Linux−HA
(heartbeat) [ROB00], SGI’s FailSafe[SGI01], Mission Critical’s Convolo
cluster[BUR00], and Sistina’s Global File System2[PRE00].

It is worth mentioning some of the reasons why as of now the Linux−HA
project has only implemented STONITH fencing:
� STONITH has a low development cost
� Since complexity is the enemy of reliability, STONITH’s simplicity is seen as

a great virtue
� Linux SCSI reserve/release support is immature and not consistently

implemented
� The non−hierarchical nature of Linux development means ensuring consistency

between the various components in the system is much harder. This is made
worse by developers not appreciating the importance of these features.

� Linux−HA runs on many platforms, and reset mechanisms exist for most
computers, and most STONITH implementations are common regardless of
platform.

One of the more common objections to using STONITH is that administrators
don’ t want their computers being rebooted automatically. This is dealt with by one
the Linux−HA STONITH implementations. There is a version of a STONITH
plugin for a manual reboot method − where an operator is informed of the need to
reboot a node, and then certifies that they rebooted it. This gives the customer the
ability to intervene before takeovers occur. This manual reboot plugin is
whimsically called the "meatware" plugin.

2 Although the GFS project calls the method STOM ITH with machine
substituted for node.

Resource Fencing using STONITH 5

4. STONITH in Two−Node Systems

It is commonly understood that two node systems are a special case in high−
availability systems for two reasons:
� Simple quorum mechanisms require an odd number of nodes (although one can

use a quorum device to help this out)
� The majority of high−availability systems are two−node systems, since this is

the minimum size cluster required to provide failover

Two node systems are attractive and desirable, because they minimize cost and
complexity, but quorum mechanisms don’ t work ideally with two−node systems.
An interesting question is "What happens if you have a two node system using
STONITH but no quorum mechanism?"

The following cases come up when one operates a two−node system equipped
with STONITH, but without quorum:
� One node is operational, and one is disabled or dead
� Both nodes disabled or dead
� Both nodes alive, but incommunicado

Each of these cases will be considered in turn:

4.1 One node operational, one disabled or dead

This is the most common case in properly configured clusters. The operational
node will STONITH the other node, which will attempt to reboot. If it is able to
reboot, then it will often join the cluster and things will continue on in a
reasonably normal way. Reboots clear up a multitude of software, firmware and
hardware problems. Of course, if the node does not successfully reboot after being
reset, then it will not rejoin the cluster.

4.2 Both nodes disabled or dead

This is the least interesting case. The cluster has suffered multiple simultaneous
failures from which no automatic recovery is possible without extra hardware
support (watchdog timers, etc.).

4.3 Both nodes alive and well, but incommunicado

This is the most interesting case. If the cluster is configured according to the
accepted best practice of having multiple independent communications
mechanisms [MIL99] (for example, serial and ethernet), then the system has
suffered multiple failures. The cluster may or may not be able to recover from this.
But, whether or not it can recover from these multiple failures, protection of the
integrity of cluster resources is still of paramount importance. There are a few
subcases to consider:

� Communication failure was caused by failure of something which is cured by a
system reset

� Communication failure is not caused by something which will be helped by a
system reset.

4.3.1 Communications fixed by a system reset

If the node which was reset was the one which had the fault leading to

6 Calculateurs Parallèles Journal
communications failure, then things will recover and all is well. If the node which
was reset was not the one with the communications fault, then when it reboots,
communications will still be faulty. However, this time, the rebooted node will
reset the other (faulty) node and communications will be restored. Although it took
an extra reboot cycle to reset the proper node, at no time were the sharing rules for
resources broken, so the integrity of the resources was preserved. In order to
maximize the probability of resetting the right node in the first place, the FailSafe
system has an interesting strategy. If a node wants to reset its peer and the other
node in the cluster has been a member of the cluster longer than it has, it waits an
extra period of time, to allow the other node the opportunity to reset it first. If a
system has had stability problems, this increases the chances that the unstable node
(the youngest node) will be reset by the stable node (the oldest node). This strategy
is informally described as "the oldest node shoots first". This also has the effect of
minimizing the probability that both nodes will shoot each other simultaneously.

4.3.2 Communications not fixed by a system reset

This case is the least satisfactory. In this case, the nodes enter into a behavior
with one being reset, then resetting the other, which reboots and resets it and so on.
This cycle will continue until the communications problem is resolved or a human
being intervenes. This is not a very satisfactory behavior. However, there are
several things to keep in mind about this situation:

� The integrity of the resources is still preserved
� Multiple simultaneous failures have occurred − this cannot always be recovered

from by any cluster system.
� If the cluster is configured to communicate across those subnets which

customers use to reach the cluster as well, then it probably cannot provide
useful service until these networks begin operating again.

� If one established quorum through a quorum device (like a router or a shared
disk), then service would also not likely be available in these circumstances
(although the systems wouldn’ t be rebooting each other).

This subcase illustrates a good reason why it is desirable to send cluster control
traffic across multiple independent links. When practical, the author recommends
that one of the links should be something simple like a serial link − because serial
links have few points of failure. They don’ t require external devices (like hubs) or
additional power, and are a mature and highly reliable technology. As a practical
matter, the author also suggests that one screw the cables into the connectors so
they cannot fall out or be pulled out by mistake.

It appears from this analysis that one can operate a two−node cluster with
STONITH and without a quorum mechanism without endangering the integrity of
cluster resources. Earlier we established that quorum was not sufficient for a
cluster. In the two−node case, it appears that it is also not necessary − at least for
some definitions of the problem.

5. Power−Cycle STONITH and Redundant Power Supplies

As was mentioned, one of the most common implementations of STONITH
temporarily removes the power from an errant node to force it to reboot. This is
more complicated for resetting systems which have more than one power supply
connection. This is quite common in servers chosen for high−availability
applications. Many power controllers provide "off", "on" and "reboot" operations.

Resource Fencing using STONITH 7
Normally, STONITH implementations simply use the reboot operation which
causes the machine to be power cycled. This is preferable to using an "off"
operation followed by an "on" operation. If Node "A" is in the process of resetting
node "B", then it is possible that node "B" is simultaneously trying to reset node
"A". If both succeed in their "off" operation, then neither will ever succeed in
turning the other back on. Although techniques which help this situation were
discussed before, they aren’ t perfect, and this is a highly undesirable state of
affairs. The solution to this problem is for each power inlet but the last one issue
an "off" command. On the last inlet, issue a "reboot" command. This way, if
despite all precautions, both machines issue resets to each other simultaneously,
they will both reboot, and not both stay down.

6. STONITH in L inux−HA

As was alluded to earlier, the Linux−HA STONITH system is a library which
loads the desired plugin for the type of reset hardware. There are currently 10
different STONITH plugins. Each plugin operates a different type of reset device.
One plugin operates a UPS, five operate different brands of power switches, one
interfaces to the VACM cluster management software, one is the meatware plugin
mentioned earlier, and two are primarily for use in test environments.

The Linux−HA STONITH plugin library was specifically designed not to be
tied to any particular cluster system. At the time, the author was working on both
the FailSafe and heartbeat clustering systems, and wanted it to be used in either
system. Although the operations which have to be performed are quite simple, the
API design proved more difficult than anticipated. The author takes this as
evidence of the difficulty of designing good, widely−applicable APIs.

The STONITH API [ROB01] simply reflects reset hardware capabilities in a
uniform way. It does not try to interact with cluster configuration databases, or
provide more capability than the hardware provides. If the reset hardware is
network aware, and accessible through the network, then that capability is
reflected through the API. If the reset hardware is only accessible through a serial
port which is connected to a single machine − that is also reflected through the
API. This has made it easy to write new STONITH plugins, since the drivers are
isolated from cluster administrative details, and simply reflect the capabilities of
the existing hardware. Since the API is cluster independent (and indeed doesn’ t
even depend on being in a cluster), it has been easy to integrate into various cluster
frameworks.

7. L inux−HA STONITH futures

The STONITH implementation which Linux−HA developed has been a success
as a reusable component. It has been adopted by three cluster systems and has had
contributions from several companies and individuals. Although the API itself is
reasonably good, there is a perfectly valid criticism of the API which will be
remedied in future releases.

This difficulty relates to how the STONITH plugins are configured. In order for
a plugin to create a STONITH object for the underlying hardware, it has to be
given some configuration parameters. These are passed to the plugin as an opaque
string. This is fine in some respects, because it is uniform, simple, and easy to
implement. However, when a user interface program wants to configure a
STONITH object, it either has to just hope the person can type in the string that’s

8 Calculateurs Parallèles Journal
needed (the plugin API helps with this), or have special case code in it for each
type of STONITH plugin.

The first approach is unsatisfactory because the GUI cannot provide the user
good feedback on the details − like the opaque string is an IP address, a login and a
password, and validate each separately. So, much of the good a GUI can do for a
user is defeated. The second approach basically defeats the purpose of the shared
development plugin environment. It means that although projects can share
STONITH plugins, they probably have to change their GUI for each and every
STONITH plugin that is created − minimizing the effects of the code sharing.

So, we intend to take another approach in the future. It is our intent to enhance
the API so that each plugin can be queried for metadata information which
describes the parameters it needs for its configuration. User interface code could
then query a plugin for its configuration metadata and construct an appropriate
user interface dialog for configuring the plugin. This is similar in some respects to
the approach used in the SANE (a Linux−based scanner system) for configuring its
scanner plugins. The interesting part about this solution is that the solution
(creating metadata, etc.) is not at all specific to STONITH plugins, but occurs in
many contexts − particularly those where plugins are a key part of the architecture.

The Linux−HA STONITH implementation has proven itself to be a reasonably
general cluster component, which allows reasonably unrelated open source projects
to share development and testing costs effectively. This has inspired a group in the
open source area to try to extend this idea into a complete framework of reusable
general cluster components. This project (which is just getting organized at the
time of this writing) is called the Open Cluster Framework Project[COO01].

8. Conclusions

Clustered computers need to protect the integrity of shared resources. Quorum is a
commonly used technique[TWE00], but must be used in combination with
resource fencing. Resource−based fencing is commonly used, but STONITH
fencing is more commonly used in the Linux community because of the volatility
of the Linux environment. STONITH fencing is simple to implement, and widely
applicable to a variety of environments and computers. The use of STONITH as a
fencing mechanism was discussed in detail, with special attention given to the
two−node system. The STONITH implementation in Linux−HA is based on a
general plugin architecture, and has proven very successful as an implementation,
and as an open source project. The architecture used in the Linux−HA STONITH
subsystem is being extended into a broader scope − the Open Cluster Framework
Project.

Acknowledgments

The author would like to thank David Brower for the excellent discussions on
fencing which he led in the linux−ha mailing list, and the many contributors of
STONITH methods: Mike Ledoux, Todd Wheeling, Andreas Piesk, Gregor Binder,
Eric Z. Ayers, Joachim Gleissner and Michael C Tilstra. The author would also
like to thank Michael Brown for suggesting a straightforward solution to the
redundant power supplies problem.

Resource Fencing using STONITH 9
9. Bibliography

[BUR00] BURKE, T., "High−Availability Cluster Checklist", Linux Journal, no. 80,
December, 2000.

[COO01] COOK, F., "Linux High−Availability Working Group", Linux Weekly News OLS
2001 Feature Article, 25 July, 2001, http://lwn.net/2001/features/OLS/linuxha.php3.

[LHA01] HIGH−AVAILABILITY LINUX PROJECT MEMBERS, Linux−HA Mailing List Archives,
http://marc.theaimsgroup.com/?l=linux−ha&r=1&w=2

[MIL99] M ILZ, HARALD, "The Linux High Availability HOWTO".
http://metalab.unc.edu/pub/linux/ALPHA/linux−ha/High−Availability−
HOWTO.html

[PHI98] PFISTER, GREGORY F., In Search of Clusters, 2nd Edition, Prentice Hall PTR, 1998

[PRE00] PRESLAN, K., ET AL., "Scalability and Failure Recovery in a Linux Cluster File
System", 4th Annual Linux Showcase and Conference, Atlanta, Georgia, October 10−
14, 2000, p. 169−180.

[ROB00] ROBERTSON, A., "Linux−HA Heartbeat System Design", 4th Annual Linux
Showcase and Conference, Atlanta, Georgia, October 10−14, 2000, p. 305−316.

[ROB01] ROBERTSON, A., "Linux−HA APIs", presented at the LinuxWorld Conference and
Expo, New York City, New York, Jan 30−Feb 2, 2001.
http://linux−ha.org/heartbeat/LWCE−NYC−2001/index.html

[SGI01] SGI, INC., "The Linux Fail Safe Project", http://oss.sgi.com/projects/failsafe/

[TWE00] TWEEDIE, S. C., "Quorum Operations",
http://linux−ha.org/PhaseII/WhitePapers/sct/quorum.txt

