22 June 2001 16:37

CHAPTER SIX

FLOW OF TIME

At this point, we know the basics of how to write a full-featured char module.
Real-world drivers, however, need to do more than implement the necessary oper-
ations; they have to deal with issues such as timing, memory management, hard-
ware access, and more. Fortunately, the kernel makes a number of facilities
available to ease the task of the driver writer. In the next few chapters we’ll fill in
information on some of the kernel resources that are available, starting with how
timing issues are addressed. Dealing with time involves the following, in order of
increasing complexity:

e Understanding kernel timing
e Knowing the current time
e Delaying operation for a specified amount of time

e Scheduling asynchronous functions to happen after a specified time lapse

Time Intervals in the Kernel

The first point we need to cover is the timer interrupt, which is the mechanism the
kernel uses to keep track of time intervals. Interrupts are asynchronous events that
are usually fired by external hardware; the CPU is interrupted in its current activity
and executes special code (the Interrupt Service Routine, or ISR) to serve the inter-
rupt. Interrupts and ISR implementation issues are covered in Chapter 9.

Timer interrupts are generated by the system’s timing hardware at regular intervals;
this interval is set by the kernel according to the value of HZ, which is an

181



22 June 2001 16:37

Chapter 6: Flow of Time

architecture-dependent value defined in <linux/param.h>. Current Linux ver-
sions define HZ to be 100 for most platforms, but some platforms use 1024, and
the IA-64 simulator uses 20. Despite what your preferred platform uses, no driver
writer should count on any specific value of HZ.

Every time a timer interrupt occurs, the value of the variable jiffies is incre-
mented. jiffies is initialized to 0 when the system boots, and is thus the num-
ber of clock ticks since the computer was turned on. It is declared in
<linux/sched.h> as unsigned long volatile, and will possibly overflow
after a long time of continuous system operation (but no platform features jiffy
overflow in less than 16 months of uptime). Much effort has gone into ensuring
that the kernel operates properly when jiffies overflows. Driver writers do not
normally have to worry about jiffies overflows, but it is good to be aware of
the possibility.

It is possible to change the value of HZ for those who want systems with a differ-
ent clock interrupt frequency. Some people using Linux for hard real-time tasks
have been known to raise the value of HZ to get better response times; they are
willing to pay the overhead of the extra timer interrupts to achieve their goals. All
in all, however, the best approach to the timer interrupt is to keep the default
value for HZ, by virtue of our complete trust in the kernel developers, who have
certainly chosen the best value.

Processor-Specific Registers

If you need to measure very short time intervals or you need extremely high preci-
sion in your figures, you can resort to platform-dependent resources, selecting pre-
cision over portability.

Most modern CPUs include a high-resolution counter that is incremented every
clock cycle; this counter may be used to measure time intervals precisely. Given
the inherent unpredictability of instruction timing on most systems (due to instruc-
tion scheduling, branch prediction, and cache memory), this clock counter is the
only reliable way to carry out small-scale timekeeping tasks. In response to the
extremely high speed of modern processors, the pressing demand for empirical
performance figures, and the intrinsic unpredictability of instruction timing in CPU
designs caused by the various levels of cache memories, CPU manufacturers intro-
duced a way to count clock cycles as an easy and reliable way to measure time
lapses. Most modern processors thus include a counter register that is steadily
incremented once at each clock cycle.

The details differ from platform to platform: the register may or may not be read-
able from user space, it may or may not be writable, and it may be 64 or 32 bits
wide—in the latter case you must be prepared to handle overflows. Whether or
not the register can be zeroed, we strongly discourage resetting it, even when

182



22 June 2001 16:37

Time Intervals in the Kernel

hardware permits. Since you can always measure differences using unsigned vari-
ables, you can get the work done without claiming exclusive ownership of the
register by modifying its current value.

The most renowned counter register is the TSC (timestamp counter), introduced in
x86 processors with the Pentium and present in all CPU designs ever since. It is a
64-bit register that counts CPU clock cycles; it can be read from both kernel space
and user space.

After including <asm/msr .h> (for “machine-specific registers”), you can use one
of these macros:

rdtsc (low,high) ;
rdtscl (low) ;

The former atomically reads the 64-bit value into two 32-bit variables; the latter
reads the low half of the register into a 32-bit variable and is sufficient in most
cases. For example, a 500-MHz system will overflow a 32-bit counter once every
8.5 seconds; you won't need to access the whole register if the time lapse you are
benchmarking reliably takes less time.

These lines, for example, measure the execution of the instruction itself:

unsigned long ini, end;
rdtscl(ini); rdtscl(end);
printk("time lapse: %li\n", end - ini);

Some of the other platforms offer similar functionalities, and kernel headers offer
an architecture-independent function that you can use instead of rdtsc. It is called
get_cycles, and was introduced during 2.1 development. Its prototype is

#include <linux/timex.h>
cycles_t get_cycles(void) ;

The function is defined for every platform, and it always returns 0 on the plat-
forms that have no cycle-counter register. The cycles_t type is an appropriate
unsigned type that can fit in a CPU register. The choice to fit the value in a single
register means, for example, that only the lower 32 bits of the Pentium cycle
counter are returned by get_cycles. The choice is a sensible one because it avoids
the problems with multiregister operations while not preventing most common
uses of the counter—namely, measuring short time lapses.

Despite the availability of an architecture-independent function, we’d like to take
the chance to show an example of inline assembly code. To this aim, we’ll imple-
ment a rdiscl function for MIPS processors that works in the same way as the x86
one.

We'll base the example on MIPS because most MIPS processors feature a 32-bit
counter as register 9 of their internal “coprocessor 0.” To access the register, only

183



22 June 2001 16:37

Chapter 6: Flow of Time

readable from kernel space, you can define the following macro that executes a
“move from coprocessor 0” assembly instruction:*

#define rdtscl (dest) \
asm__ __volatile__ ("mfcO %0,$9; nop" : "=r" (dest))

With this macro in place, the MIPS processor can execute the same code shown
earlier for the x86.

What'’s interesting with gcc inline assembly is that allocation of general-purpose
registers is left to the compiler. The macro just shown uses %0 as a placeholder for
“argument 0,” which is later specified as “any register (r) used as output (=).” The
macro also states that the output register must correspond to the C expression
dest. The syntax for inline assembly is very powerful but somewhat complex,
especially for architectures that have constraints on what each register can do
(namely, the x86 family). The complete syntax is described in the gcc documenta-
tion, usually available in the info documentation tree.

The short C-code fragment shown in this section has been run on a K7-class x86
processor and a MIPS VR4181 (using the macro just described). The former
reported a time lapse of 11 clock ticks, and the latter just 2 clock ticks. The small
figure was expected, since RISC processors usually execute one instruction per
clock cycle.

Knowing the Current Time

Kernel code can always retrieve the current time by looking at the value of
jiffies. Usually, the fact that the value represents only the time since the last
boot is not relevant to the driver, because its life is limited to the system uptime.
Drivers can use the current value of jiffies to calculate time intervals across
events (for example, to tell double clicks from single clicks in input device
drivers). In short, looking at jiffies is almost always sufficient when you need
to measure time intervals, and if you need very sharp measures for short time
lapses, processor-specific registers come to the rescue.

It's quite unlikely that a driver will ever need to know the wall-clock time, since
this knowledge is usually needed only by user programs such as cron and at. If
such a capability is needed, it will be a particular case of device usage, and the
driver can be correctly instructed by a user program, which can easily do the con-

* The trailing nop instruction is required to prevent the compiler from accessing the target
register in the instruction immediately following mifcO. This kind of interlock is typical of
RISC processors, and the compiler can still schedule useful instructions in the delay slots.
In this case we use nop because inline assembly is a black box for the compiler and no
optimization can be performed.

184



22 June 2001 16:37

Knowing the Current Time

version from wall-clock time to the system clock. Dealing directly with wall-clock
time in a driver is often a sign that policy is being implemented, and should thus
be looked at closely.

If your driver really needs the current time, the do_gettimeofday function comes to
the rescue. This function doesn’t tell the current day of the week or anything like
that; rather, it fills a struct timeval pointer—the same as used in the gettime-
ofday system call—with the usual seconds and microseconds values. The proto-
type for do_gettimeofday is:

#include <linux/time.h>
void do_gettimeofday (struct timeval *tv);

The source states that do_gettimeofday has “near microsecond resolution” for
many architectures. The precision does vary from one architecture to another,
however, and can be less in older kernels. The current time is also available
(though with less precision) from the xtime variable (a struct timeval);
however, direct use of this variable is discouraged because you can’t atomically
access both the timeval fields tv_sec and tv_usec unless you disable inter-
rupts. As of the 2.2 kernel, a quick and safe way of getting the time quickly, possi-
bly with less precision, is to call get_fast_time:

void get_fast_time(struct timeval *tv);

Code for reading the current time is available within the jit (“Just In Time”) mod-
ule in the source files provided on the O’Reilly FTP site. jit creates a file called
/proc/currentime, which returns three things in ASCII when read:

e The current time as returned by do_gettimeofday
e The current time as found in xtime
e The current jiffies value

We chose to use a dynamic /proc file because it requires less module code—it’s
not worth creating a whole device just to return three lines of text.

If you use cat to read the file multiple times in less than a timer tick, you’ll see the
difference between xtime and do_gettimeofday, reflecting the fact that xtime is
updated less frequently:

morgana% cd /proc; cat currentime currentime currentime
gettime: 846157215.937221

Xtime: 846157215.931188

jiffies: 1308094

gettime: 846157215.939950

Xtime: 846157215.931188

jiffies: 1308094

gettime: 846157215.942465

Xtime: 846157215.941188

jiffies: 1308095

185



22 June 2001 16:37

Chapter 6: Flow of Time

Delaying Execution

Device drivers often need to delay the execution of a particular piece of code for a
period of time—usually to allow the hardware to accomplish some task. In this
section we cover a number of different techniques for achieving delays. The cir-
cumstances of each situation determine which technique is best to use; we'll go
over them all and point out the advantages and disadvantages of each.

One important thing to consider is whether the length of the needed delay is
longer than one clock tick. Longer delays can make use of the system clock;
shorter delays typically must be implemented with software loops.

Long Delays

If you want to delay execution by a multiple of the clock tick or you don’t require
strict precision (for example, if you want to delay an integer number of seconds),
the easiest implementation (and the most braindead) is the following, also known
as busy waiting:

unsigned long j = jiffies + jit_delay * HZ;

while (jiffies < 3j)
/* nothing */;

This kind of implementation should definitely be avoided. We show it here
because on occasion you might want to run this code to understand better the
internals of other code.

So let’s look at how this code works. The loop is guaranteed to work because
jiffies is declared as volatile by the kernel headers and therefore is reread
any time some C code accesses it. Though “correct,” this busy loop completely
locks the processor for the duration of the delay; the scheduler never interrupts a
process that is running in kernel space. Still worse, if interrupts happen to be dis-
abled when you enter the loop, jiffies won’t be updated, and the while con-
dition remains true forever. You’'ll be forced to hit the big red button.

This implementation of delaying code is available, like the following ones, in the
Jit module. The /proc/jit* files created by the module delay a whole second every
time they are read. If you want to test the busy wait code, you can read /proc/jit-
busy, which busy-loops for one second whenever its read method is called; a
command such as dd if=/proc/jitbusy bs=1 delays one second each time it reads a
character.

As you may suspect, reading /proc/jitbusy is terrible for system performance,
because the computer can run other processes only once a second.

186



22 June 2001 16:37

Delaying Execution

A better solution that allows other processes to run during the time interval is the
following, although it can’t be used in hard real-time tasks or other time-critical sit-
uations.

while (jiffies < j)
schedule() ;

The variable j in this example and the following ones is the value of jiffies at
the expiration of the delay and is always calculated as just shown for busy waiting.

This loop (which can be tested by reading /proc/jitsched) still isn’t optimal. The
system can schedule other tasks; the current process does nothing but release the
CPU, but it remains in the run queue. If it is the only runnable process, it will
actually run (it calls the scheduler, which selects the same process, which calls the
scheduler, which . ..). In other words, the load of the machine (the average num-
ber of running processes) will be at least one, and the idle task (process number
0, also called swapper for historical reasons) will never run. Though this issue may
seem irrelevant, running the idle task when the computer is idle relieves the pro-
cessor’s workload, decreasing its temperature and increasing its lifetime, as well as
the duration of the batteries if the computer happens to be your laptop. Moreover,
since the process is actually executing during the delay, it will be accounted for all
the time it consumes. You can see this by running time cat /proc/jitsched.

If, instead, the system is very busy, the driver could end up waiting rather longer
than expected. Once a process releases the processor with schedule, there are no
guarantees that it will get it back anytime soon. If there is an upper bound on the
acceptable delay time, calling schedule in this manner is not a safe solution to the
driver’s needs.

Despite its drawbacks, the previous loop can provide a quick and dirty way to
monitor the workings of a driver. If a bug in your module locks the system solid,
adding a small delay after each debugging printk statement ensures that every
message you print before the processor hits your nasty bug reaches the system log
before the system locks. Without such delays, the messages are correctly printed to
the memory buffer, but the system locks before klogd can do its job.

The best way to implement a delay, however, is to ask the kernel to do it for you.
There are two ways of setting up short-term timeouts, depending on whether your
driver is waiting for other events or not.

If your driver uses a wait queue to wait for some other event, but you also want to
be sure it runs within a certain period of time, it can use the timeout versions of
the sleep functions, as shown in “Going to Sleep and Awakening” in Chapter 5:

sleep_on_timeout (wait_queue_head_t *g, unsigned long timeout) ;
interruptible_sleep_on_timeout (wait_queue_head_t *q,
unsigned long timeout);

Both versions will sleep on the given wait queue, but will return within the time-
out period (in jiffies) in any case. They thus implement a bounded sleep that will

187



22 June 2001 16:37

Chapter 6: Flow of Time

not go on forever. Note that the timeout value represents the number of jiffies to
wait, not an absolute time value. Delaying in this manner can be seen in the
implementation of /proc/jitqueue:

wait_queue_head_t wait;

init_waitqueue_head (&wait);
interruptible_sleep_on_timeout (&wait, jit_delay*HZ) ;

In a normal driver, execution could be resumed in either of two ways: somebody
calls wake_up on the wait queue, or the timeout expires. In this particular imple-
mentation, nobody will ever call wake_up on the wait queue (after all, no other
code even knows about it), so the process will always wake up when the timeout
expires. That is a perfectly valid implementation, but, if there are no other events
of interest to your driver, delays can be achieved in a more straightforward manner
with schedule_timeout:

set_current_state (TASK_INTERRUPTIBLE) ;
schedule_timeout (jit_delay*HZ);

The previous line (for /proc/jitself) causes the process to sleep until the given time
has passed. schedule_timeout, too, expects a time offset, not an absolute number
of jiffies. Once again, it is worth noting that an extra time interval could pass
between the expiration of the timeout and when your process is actually sched-
uled to execute.

Short Delays

Sometimes a real driver needs to calculate very short delays in order to synchro-
nize with the hardware. In this case, using the jiffies value is definitely not the
solution.

The kernel functions udelay and mdelay serve this purpose.” Their prototypes are

#include <linux/delay.h>
void udelay (unsigned long usecs) ;
void mdelay (unsigned long msecs) ;

The functions are compiled inline on most supported architectures. The former
uses a software loop to delay execution for the required number of microseconds,
and the latter is a loop around udelay, provided for the convenience of the pro-
grammer. The udelay function is where the BogoMips value is used: its loop is
based on the integer value loops_per_second, which in turn is the result of the
BogoMips calculation performed at boot time.

The udelay call should be called only for short time lapses because the precision
of loops_per_second is only eight bits, and noticeable errors accumulate when

* The u in udelay represents the Greek letter mu and stands for micro.

188



22 June 2001 16:37

Task Queues

calculating long delays. Even though the maximum allowable delay is nearly one
second (since calculations overflow for longer delays), the suggested maximum
value for wudelay is 1000 microseconds (one millisecond). The function mdelay
helps in cases where the delay must be longer than one millisecond.

It’s also important to remember that udelay is a busy-waiting function (and thus
mdelay is too); other tasks can’t be run during the time lapse. You must therefore
be very careful, especially with mdelay, and avoid using it unless there’s no other
way to meet your goal.

Currently, support for delays longer than a few microseconds and shorter than a
timer tick is very inefficient. This is not usually an issue, because delays need to
be just long enough to be noticed by humans or by the hardware. One hundredth
of a second is a suitable precision for human-related time intervals, while one mil-
lisecond is a long enough delay for hardware activities.

Although mdelay is not available in Linux 2.0, sysdep.b fills the gap.

Task Queues

One feature many drivers need is the ability to schedule execution of some tasks
at a later time without resorting to interrupts. Linux offers three different interfaces
for this purpose: task queues, tasklets (as of kernel 2.3.43), and kernel timers. Task
queues and tasklets provide a flexible utility for scheduling execution at a later
time, with various meanings for “later”; they are most useful when writing inter-
rupt handlers, and we’ll see them again in “Tasklets and Bottom-Half Processing,”
in Chapter 9. Kernel timers are used to schedule a task to run at a specific time in
the future and are dealt with in “Kernel Timers,” later in this chapter.

A typical situation in which you might use task queues or tasklets is to manage
hardware that cannot generate interrupts but still allows blocking read. You need
to poll the device, while taking care not to burden the CPU with unnecessary
operations. Waking the reading process at fixed time intervals (for example, using
current->timeout) isn’t a suitable approach, because each poll would require
two context switches (one to run the polling code in the reading process, and one
to return to a process that has real work to do), and often a suitable polling mech-
anism can be implemented only outside of a process’s context.

A similar problem is giving timely input to a simple hardware device. For example,
you might need to feed steps to a stepper motor that is directly connected to the
parallel port—the motor needs to be moved by single steps on a timely basis. In
this case, the controlling process talks to your device driver to dispatch a move-
ment, but the actual movement should be performed step by step at regular inter-
vals after returning from write.

189



22 June 2001 16:37

Chapter 6: Flow of Time

The preferred way to perform such floating operations quickly is to register a task
for later execution. The kernel supports task queues, where tasks accumulate to be
“consumed” when the queue is run. You can declare your own task queue and
trigger it at will, or you can register your tasks in predefined queues, which are
run (triggered) by the kernel itself.

This section first describes task queues, then introduces predefined task queues,
which provide a good start for some interesting tests (and hang the computer if
something goes wrong), and finally introduces how to run your own task queues.
Following that, we look at the new fasklet interface, which supersedes task queues
in many situations in the 2.4 kernel.

The Nature of Tlask Queues

A task queue is a list of tasks, each task being represented by a function pointer
and an argument. When a task is run, it receives a single void * argument and
returns void. The pointer argument can be used to pass along a data structure to
the routine, or it can be ignored. The queue itself is a list of structures (the tasks)
that are owned by the kernel module declaring and queueing them. The module is
completely responsible for allocating and deallocating the structures, and static
structures are commonly used for this purpose.

A queue element is described by the following structure, copied directly from
<linux/tqueue.h>:

struct tqg _struct {

struct tg_struct *next; /* linked list of active bh’s */
int sync; /* must be initialized to zero */
void (*routine) (void *); /* function to call */

void *data; /* argument to function */

Y

The “bh” in the first comment means bottom half. A bottom half is “half of an
interrupt handler”; we’ll discuss this topic thoroughly when we deal with inter-
rupts in “Tasklets and Bottom-Half Processing,” in Chapter 9. For now, suffice it to
say that a bottom half is a mechanism provided by a device driver to handle asyn-
chronous tasks which, usually, are too large to be done while handling a hardware
interrupt. This chapter should make sense without an understanding of bottom
halves, but we will, by necessity, refer to them occasionally.

The most important fields in the data structure just shown are routine and
data. To queue a task for later execution, you need to set both these fields before
queueing the structure, while next and sync should be cleared. The sync flag
in the structure is used by the kernel to prevent queueing the same task more than
once, because this would corrupt the next pointer. Once the task has been
queued, the structure is considered “owned” by the kernel and shouldn’t be
modified until the task is run.

190



22 June 2001 16:37

Task Queues

The other data structure involved in task queues is task_qgueue, which is cur-
rently just a pointer to struct tg_struct; the decision to typedef this
pointer to another symbol permits the extension of task_gqueue in the future,
should the need arise. task_queue pointers should be initialized to NULL before
use.

The following list summarizes the operations that can be performed on task
queues and struct tqg_structs.

DECLARE_TASK_QUEUE (name) ;
This macro declares a task queue with the given name, and initializes it to the
empty state.

int queue_task(struct tg _struct *task, task_gqueue *1list);
As its name suggests, this function queues a task. The return value is 0 if the
task was already present on the given queue, nonzero otherwise.

void run_task_queue (task_gqueue *1list);
This function is used to consume a queue of accumulated tasks. You won't
need to call it yourself unless you declare and maintain your own queue.

Before getting into the details of using task queues, we need to pause for a
moment to look at how they work inside the kernel.

How Task Queues Are Run

A task queue, as we have already seen, is in practice a linked list of functions to
call. When run_task_queue is asked to run a given queue, each entry in the list is
executed. When you are writing functions that work with task queues, you have to
keep in mind when the kernel will call run_task_queue; the exact context imposes
some constraints on what you can do. You should also not make any assumptions
regarding the order in which enqueued tasks are run; each of them must do its
task independently of the other ones.

And when are task queues run? If you are using one of the predefined task queues
discussed in the next section, the answer is “when the kernel gets around to it.”
Different queues are run at different times, but they are always run when the ker-
nel has no other pressing work to do.

Most important, they almost certainly are not run when the process that queued
the task is executing. They are, instead, run asynchronously. Until now, everything
we have done in our sample drivers has run in the context of a process executing
system calls. When a task queue runs, however, that process could be asleep, exe-
cuting on a different processor, or could conceivably have exited altogether.

This asynchronous execution resembles what happens when a hardware interrupt
happens (which is discussed in detail in Chapter 9). In fact, task queues are often

191



22 June 2001 16:37

Chapter 6: Flow of Time

run as the result of a “software interrupt.”” When running in interrupt mode (or
interrupt time) in this way, your code is subject to a number of constraints. We
will introduce these constraints now; they will be seen again in several places in
this book. Repetition is called for in this case; the rules for interrupt mode must be
followed or the system will find itself in deep trouble.

A number of actions require the context of a process in order to be executed.
When you are outside of process context (i.e., in interrupt mode), you must
observe the following rules:

e No access to user space is allowed. Because there is no process context, there
is no path to the user space associated with any particular process.

e The current pointer is not valid in interrupt mode, and cannot be used.

e No sleeping or scheduling may be performed. Interrupt-mode code may not
call schedule or sleep_om; it also may not call any other function that may
sleep. For example, calling kmalloc( . .., GFP_KERNEL) is against the
rules. Semaphores also may not be used since they can sleep.

Kernel code can tell if it is running in interrupt mode by calling the function
in_interrupt( ), which takes no parameters and returns nonzero if the processor is
running in interrupt time.

One other feature of the current implementation of task queues is that a task can
requeue itself in the same queue from which it was run. For instance, a task being
run from the timer tick can reschedule itself to be run on the next tick by calling
queue_task to put itself on the queue again. Rescheduling is possible because the
head of the queue is replaced with a NULL pointer before consuming queued
tasks; as a result, a new queue is built once the old one starts executing.

Although rescheduling the same task over and over might appear to be a pointless
operation, it is sometimes useful. For example, consider a driver that moves a pair
of stepper motors one step at a time by rescheduling itself on the timer queue
until the target has been reached. Another example is the jig module, where the
printing function reschedules itself to produce its output—the result is several iter-
ations through the timer queue.

Predefined Task Queues

The easiest way to perform deferred execution is to use the queues that are
already maintained by the kernel. There are a few of these queues, but your driver
can use only three of them, described in the following list. The queues are
declared in <1linux/tqgueue.h>, which you should include in your source.

The scheduler queue
The scheduler queue is unique among the predefined task queues in that it
runs in process context, implying that the tasks it runs have a bit more free-
dom in what they can do. In Linux 2.4, this queue runs out of a dedicated

192



22 June 2001 16:37

Task Queues

kernel thread called keventd and is accessed via a function called sched-
ule_task. In older versions of the kernel, keventd was not used, and the queue
(tg_scheduler) was manipulated directly.

tg_timer
This queue is run by the timer tick. Because the tick (the function do_timer)
runs at interrupt time, any task within this queue runs at interrupt time as well.

tg_immediate
The immediate queue is run as soon as possible, either on return from a sys-
tem call or when the scheduler is run, whichever comes first. The queue is
consumed at interrupt time.

Other predefined task queues exist as well, but they are not generally of interest to
driver writers.

The timeline of a driver using a task queue is represented in Figure 6-1. The figure
shows a driver that queues a function in tq_immediate from an interrupt han-
dler.

How the examples work

Examples of deferred computation are available in the jig (“Just In Queue”) mod-
ule, from which the source in this section has been extracted. This module creates
/proc files that can be read using dd or other tools; this is similar to jit.

The process reading a jiqg file is put to sleep until the buffer is full.” This sleeping
is handled with a simple wait queue, declared as

DECLARE_WAIT QUEUE_HEAD (jiq wait);

The buffer is filled by successive runs of a task queue. Each pass through the
queue appends a text string to the buffer being filled; each string reports the cur-
rent time (in jiffies), the process that is current during this pass, and the return
value of in_interrupt.

The code for filling the buffer is confined to the jig_print_tq function, which exe-
cutes at each run through the queue being used. The printing function is not inter-
esting and is not worth showing here; instead, let’s look at the initialization of the
task to be inserted in a queue:

struct tg_struct jig task; /* global: initialized to zero */

/* these lines are in jig init() */
jig _task.routine = jiqg print_tqg;
jig task.data = (void *)&jig data;

* The buffer of a /proc file is a page of memory, 4 KB, or whatever is appropriate for the
platform you use.

193



22 June 2001 16:37

Chapter 6: Flow of Time

| blah(); |
i blah();

do_sth();
queue_task

do_sth_else();
return;

lnterrupt—}

Code Being Executed

tqg_immediate

(task, tq) ;

tqg_immediate

Return

from
I interrupt

i blah(); !
| blah():

As soon as p

at a safe time

]

Data

task

— T\

Other tasks may be queued

0ssible,

-

run_task_gueue (tg_immediate) ;

do_the_task();
return;

4

{ plah(); |
| blah();

tg _immediate

— meny

I Process code |,~
I: Kernel code tq_immediate

(and pointer to task)
Driver code

'/ “sync” bit

struct task_struct
(and pointer to next)

Figure 6-1. Timeline of task-queue usage

The scheduler queue

194

There’s no need to clear the sync and next fields of jig task because static
variables are initialized to 0 by the compiler.

The scheduler queue is, in some ways, the easiest to use. Because tasks executed



22 June 2001 16:37

Task Queues

from this queue do not run in interrupt mode, they can do more things; in particu-
lar, they can sleep. Many parts of the kernel use this queue to accomplish a wide
variety of tasks.

As of kernel 2.4.0-test11, the actual task queue implementing the scheduler queue
is hidden from the rest of the kernel. Rather than use queue_task directly, code
using this queue must call schedule_task to put a task on the queue:

int schedule_task(struct tg struct *task);

task, of course, is the task to be scheduled. The return value is directly from
queue_task: nonzero if the task was not already on the queue.

Again, as of 2.4.0-test11, the kernel runs a special process, called keventd, whose
sole job is running tasks from the scheduler queue. keventd provides a predictable
process context for the tasks it runs (unlike the previous implementation, which
would run tasks under an essentially random process’s context).

There are a couple of implications to the keventd implementation that are worth
keeping in mind. The first is that tasks in this queue can sleep, and some kernel
code takes advantage of that freedom. Well-behaved code, however, should take
care to sleep only for very short periods of time, since no other tasks will be run
from the scheduler queue while keventd is sleeping. It is also a good idea to keep
in mind that your task shares the scheduler queue with others, which can also
sleep. In normal situations, tasks placed in the scheduler queue will run very
quickly (perhaps even before schedule_task returns). If some other task sleeps,
though, the time that elapses before your tasks execute could be significant. Tasks
that absolutely have to run within a narrow time window should use one of the
other queues.

/proc/jigsched is a sample file that uses the scheduler queue. The read function for
the file dispatches everything to the task queue in the following way:

int jiqg_read_sched(char *buf, char **start, off_t offset,
int len, int *eof, void *data)
{

jig _data.len = 0; /* nothing printed, yet */
jig data.buf = buf; /* print in this place */
jiqg data.jiffies = jiffies; /* initial time */

/* jig print will queue_task() again in jig data.queue */
jig _data.queue = SCHEDULER_QUEUE;

schedule_task (&jig task) ; /* ready to run */
interruptible_sleep_on(&jig wait) ; /* sleep till completion */
*eof = 1;

return jig data.len;

195



22 June 2001 16:37

Chapter 6: Flow of Time

Reading /proc/jigsched produces output like the following:

time delta interrupt pid cpu command

601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd
601687 0 0 2 1 keventd

In this output, the time field is the value of jiffies when the task is run,
delta is the change in jiffies since the last time the task ran, interrupt is
the output of the in_interrupt function, pid is the ID of the running process, cpu
is the number of the CPU being used (always 0 on uniprocessor systems), and
command is the command being run by the current process.

In this case, we see that the task is always running under the keventd process. It
also runs very quickly—a task that resubmits itself to the scheduler queue can run
hundreds or thousands of times within a single timer tick. Even on a very heavily
loaded system, the latency in the scheduler queue is quite small.

The timer queue

The timer queue is different from the scheduler queue in that the queue
(tg_timer) is directly available. Also, of course, tasks run from the timer queue
are run in interrupt mode. Additionally, you’re guaranteed that the queue will run
at the next clock tick, thus eliminating latency caused by system load.

The sample code implements /proc/jigtimer with the timer queue. For this queue,
it must use queue_task to get things going:

int jiqg read_timer (char *buf, char **start, off_t offset,
int len, int *eof, void *data)

jig data.len = 0; /* nothing printed, yet */

jig _data.buf = buf; /* print in this place */

jig data.jiffies = jiffies; /* initial time */

jig data.queue = &tg timer; /* reregister yourself here */
queue_task(&jig task, &tg timer); /* ready to run */
interruptible_sleep_on (&jig wait) ; /* sleep till completion */

*eof = 1;
return jig data.len;

196



Task Queues

The following is what head /proc/jigtimer returned on a system that was compiling
a new kernel:

time delta interrupt pid cpu command

45084845 1 1 8783 0 ccl
45084846 1 1 8783 0 ccl
45084847 1 1 8783 0 ccl
45084848 1 1 8783 0 ccl
45084849 1 1 8784 0 as

45084850 1 1 8758 1 ccl
45084851 1 1 8789 0 cpp
45084852 1 1 8758 1 ccl
45084853 1 1 8758 1 ccl
45084854 1 1 8758 1 ccl
45084855 1 1 8758 1 ccl

Note, this time, that exactly one timer tick goes by between each invocation of the
task, and that an arbitrary process is running.

The immediate queue

The last predefined queue that can be used by modularized code is the immediate
queue. This queue is run via the bottom-half mechanism, which means that one
additional step is required to use it. Bottom halves are run only when the kernel
has been told that a run is necessary; this is accomplished by “marking” the bot-
tom half. In the case of tq_immediate, the necessary call is mark_bh(IMMEDI-
ATE_BH). Be sure to call mark_bb after the task has been queued; otherwise, the
kernel may run the task queue before your task has been added.

The immediate queue is the fastest queue in the system—it's executed soonest
and is run in interrupt time. The queue is consumed either by the scheduler or as
soon as one process returns from its system call. Typical output can look like this:

time delta interrupt pid cpu command

45129449 0 1 8883 0 head
45129453 4 1 0 0 swapper
45129453 0 1 601 0 X
45129453 0 1 601 0 X
45129453 0 1 601 0 X
45129453 0 1 601 0 X
45129454 1 1 0 0 swapper
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X
45129454 0 1 601 0 X

It's clear that the queue can’t be used to delay the execution of a task—it's an
“immediate” queue. Instead, its purpose is to execute a task as soon as possible,

197

22 June 2001 16:37



22 June 2001 16:37

Chapter 6: Flow of Time

but at a safe time. This feature makes it a great resource for interrupt handlers,
because it offers them an entry point for executing program code outside of the
actual interrupt management routine. The mechanism used to receive network
packets, for example, is based on a similar mechanism.

Please note that you should not reregister your task in this queue (although we do
it in jigimmed for explanatory purposes). The practice gains nothing and may lock
the computer hard if run on some version/platform pairs. Some implementations
used to rerun the queue until it was empty. This was true, for example, for version
2.0 running on the PC platform.

Running Your Own Task Queues

Declaring a new task queue is not difficult. A driver is free to declare a new task
queue, or even several of them; tasks are queued just as we've seen with the pre-
defined queues discussed previously.

Unlike a predefined task queue, however, a custom queue is not automatically run
by the kernel. The programmer who maintains a queue must arrange for a way of
running it.

The following macro declares the queue and expands to a variable declaration.
You'll most likely place it at the beginning of your file, outside of any function:

DECLARE_TASK_QUEUE (tg_custom) ;

After declaring the queue, you can invoke the usual functions to queue tasks. The
call just shown pairs naturally with the following:

queue_task (&custom_task, &tg custom) ;

The following line will run tqg_custom when it is time to execute the task-queue
entries that have accumulated:

run_task_queue (&tg custom) ;

If you want to experiment with custom queues now, you need to register a func-
tion to trigger the queue in one of the predefined queues. Although this may look
like a roundabout way to do things, it isn’'t. A custom queue can be useful when-
ever you need to accumulate jobs and execute them all at the same time, even if
you use another queue to select that “same time.”

Tasklets

Shortly before the release of the 2.4 kernel, the developers added a new mecha-
nism for the deferral of kernel tasks. This mechanism, called rasklets, is now the
preferred way to accomplish bottom-half tasks; indeed, bottom halves themselves
are now implemented with tasklets.

198



22 June 2001 16:37

Task Queues

Tasklets resemble task queues in a number of ways. They are a way of deferring a
task until a safe time, and they are always run in interrupt time. Like task queues,
tasklets will be run only once, even if scheduled multiple times, but tasklets may
be run in parallel with other (different) tasklets on SMP systems. On SMP systems,
tasklets are also guaranteed to run on the CPU that first schedules them, which
provides better cache behavior and thus better performance.

Each tasklet has associated with it a function that is called when the tasklet is to be
executed. The life of some kernel developer was made easier by giving that func-
tion a single argument of type unsigned long, which makes life a little more
annoying for those who would rather pass it a pointer; casting the long argument
to a pointer type is a safe practice on all supported architectures and pretty com-
mon in memory management (as discussed in Chapter 13). The tasklet function is
of type void; it returns no value.

Software support for tasklets is part of <linux/interrupt.h>, and the tasklet
itself must be declared with one of the following:

DECLARE_TASKLET (name, function, data);
Declares a tasklet with the given name; when the tasklet is to be executed (as
described later), the given function is called with the (unsigned long) data
value.

DECLARE_TASKLET DISABLED (name, function, data);
Declares a tasklet as before, but its initial state is “disabled,” meaning that it
can be scheduled but will not be executed until enabled at some future time.

The sample jig driver, when compiled against 2.4 headers, implements /proc/jig-
tasklet, which works like the other jig entries but uses tasklets; we didn’t emulate
tasklets for older kernel versions in sysdep.h. The module declares its tasklet as

void jig print_tasklet (unsigned long) ;
DECLARE_TASKLET (jig tasklet, jig print_tasklet, (unsigned long)
&jig data) ;

When your driver wants to schedule a tasklet to run, it calls tasklet_schedule:
tasklet_schedule(&jig tasklet) ;

Once a tasklet is scheduled, it is guaranteed to be run once (if enabled) at a safe
time. Tasklets may reschedule themselves in much the same manner as task
queues. A tasklet need not worry about running against itself on a multiprocessor
system, since the kernel takes steps to ensure that any given tasklet is only run-
ning in one place. If your driver implements multiple tasklets, however, it should
be prepared for the possibility that more than one of them could run simultane-
ously. In that case, spinlocks must be used to protect critical sections of the code
(semaphores, which can sleep, may not be used in tasklets since they run in inter-
rupt time).

199



22 June 2001 16:37

Chapter 6: Flow of Time

The output from /proc/jigtasklet looks like this:

time delta interrupt pid cpu command

45472377 0 1 8904 0 head
45472378 1 1 0 0 swapper
45472379 1 1 0 0 swapper
45472380 1 1 0 0 swapper
45472383 3 1 0 0 swapper
45472383 0 1 601 0 X
45472383 0 1 601 0 X
45472383 0 1 601 0 X
45472383 0 1 601 0 X
45472389 6 1 0 0 swapper

Note that the tasklet always runs on the same CPU, even though this output was
produced on a dual-CPU system.

The tasklet subsystem provides a few other functions for advanced use of tasklets:

vold tasklet_disable(struct tasklet_struct *t);
This function disables the given tasklet. The tasklet may still be scheduled
with tasklet_schedule, but its execution will be deferred until a time when the
tasklet has been enabled again.

void tasklet_enable(struct tasklet_struct *t);
Enables a tasklet that had been previously disabled. If the tasklet has already
been scheduled, it will run soon (but not directly out of tasklet_enable).

void tasklet_kill (struct tasklet_struct *t);

This function may be used on tasklets that reschedule themselves indefinitely.
tasklet_kill will remove the tasklet from any queue that it is on. In order to
avoid race conditions with the tasklet rescheduling itself, this function waits
until the tasklet executes, then pulls it from the queue. Thus, you can be sure
that tasklets will not be interrupted partway through. If, however, the tasklet
is not currently running and rescheduling itself, ftasklet_kill may hang.
tasklet_kill may not be called in interrupt time.

Kernel Timers

The ultimate resources for time keeping in the kernel are the timers. Timers are
used to schedule execution of a function (a timer handler) at a particular time in
the future. They thus work differently from task queues and tasklets in that you
can specify when in the future your function will be called, whereas you can’t tell
exactly when a queued task will be executed. On the other hand, kernel timers
are similar to task queues in that a function registered in a kernel timer is executed
only once—timers aren’t cyclic.

200



22 June 2001 16:37

Kernel Timers

There are times when you need to execute operations detached from any pro-
cess’s context, like turning off the floppy motor or finishing another lengthy shut-
down operation. In that case, delaying the return from close wouldn’t be fair to the
application program. Using a task queue would be wasteful, because a queued
task must continually reregister itself until the requisite time has passed.

A timer is much easier to use. You register your function once, and the kernel calls
it once when the timer expires. Such a functionality is used often within the kernel
proper, but it is sometimes needed by the drivers as well, as in the example of the
floppy motor.

The kernel timers are organized in a doubly linked list. This means that you can
create as many timers as you want. A timer is characterized by its timeout value (in
jiffies) and the function to be called when the timer expires. The timer handler
receives an argument, which is stored in the data structure, together with a pointer
to the handler itself.

The data structure of a timer looks like the following, which is extracted from
<linux/timer.h>):

struct timer_list {

struct timer_list *next; /* never touch this */

struct timer_list *prev; /* never touch this */
unsigned long expires; /* the timeout, in jiffies */
unsigned long data; /* argument to the handler */
void (*function) (unsigned long); /* handler of the timeout */
volatile int running; /* added in 2.4; don’t touch */

}i

The timeout of a timer is a value in jiffies. Thus, timer->function will run
when jiffies is equal to or greater than timer->expires. The timeout is an
absolute value; it is usually generated by taking the current value of jiffies and
adding the amount of the desired delay.

Once a timer_list structure is initialized, add_timer inserts it into a sorted list,
which is then polled more or less 100 times per second. Even systems (such as the
Alpha) that run with a higher clock interrupt frequency do not check the timer list
more often than that; the added timer resolution would not justify the cost of the
extra passes through the list.

These are the functions used to act on timers:

void init_timer (struct timer_list *timer);
This inline function is used to initialize the timer structure. Currently, it zeros
the prev and next pointers (and the running flag on SMP systems). Pro-
grammers are strongly urged to use this function to initialize a timer and to
never explicitly touch the pointers in the structure, in order to be forward
compatible.

201



22 June 2001 16:37

Chapter 6: Flow of Time

void add_timer (struct timer_list *timer);
This function inserts a timer into the global list of active timers.

int mod_timer (struct timer_list *timer, unsigned long
expires) ;
Should you need to change the time at which a timer expires, mod_timer can
be used. After the call, the new expires value will be used.

int del_timer (struct timer_list *timer);
If a timer needs to be removed from the list before it expires, del_timer should
be called. When a timer expires, on the other hand, it is automatically
removed from the list.

int del_timer_sync(struct timer_list *timer);
This function works like del_timer, but it also guarantees that, when it returns,
the timer function is not running on any CPU. del_timer_sync is used to avoid
race conditions when a timer function is running at unexpected times; it
should be used in most situations. The caller of del_timer_sync must ensure
that the timer function will not use add_timer to add itself again.

An example of timer usage can be seen in the jig module. The file /proc/jitimer
uses a timer to generate two data lines; it uses the same printing function as the
task queue examples do. The first data line is generated from the read call
(invoked by the user process looking at /proc/jitimer), while the second line is
printed by the timer function after one second has elapsed.

The code for /proc/jitimer is as follows:
struct timer_list jig timer;

void jig timedout (unsigned long ptr)

{
jig print((void *)ptr); /* print a line */
wake_up_interruptible(&jig wait); /* awaken the process */

int jig read_run_timer (char *buf, char **start, off_t offset,
int len, int *eof, void *data)

jig _data.len 0; /* prepare the argument for jiqg print() */
jig data.buf buf;
jig data.jiffies = jiffies;

jig _data.queue = NULL; /* don’'t requeue */

init_timer (&jig timer) ; /* init the timer structure */
jig_timer.function = jig timedout;

jig timer.data = (unsigned long)&jig data;

jig timer.expires = jiffies + HZ; /* one second */

202



22 June 2001 16:37

Kernel Timers

jig print(&jig data); /* print and go to sleep */
add_timer (&jig timer);

interruptible_sleep_on(&jig wait);

del_timer_sync(&jig timer); /* in case a signal woke us up */

*eof = 1;
return jig data.len;

}
Running head /proc/jitimer gives the following output:

time delta interrupt pid cpu command
45584582 0 0 8920 0 head
45584682 100 1 0 1 swapper

From the output you can see that the timer function, which printed the last line
here, was running in interrupt mode.

What can appear strange when using timers is that the timer expires at just the
right time, even if the processor is executing in a system call. We suggested earlier
that when a process is running in kernel space, it won’t be scheduled away; the
clock tick, however, is special, and it does all of its tasks independent of the cur-
rent process. You can try to look at what happens when you read /proc/jitbusy in
the background and /proc/jitimer in the foreground. Although the system appears
to be locked solid by the busy-waiting system call, both the timer queue and the
kernel timers continue running.

Thus, timers can be another source of race conditions, even on uniprocessor sys-
tems. Any data structures accessed by the timer function should be protected from
concurrent access, either by being atomic types (discussed in Chapter 10) or by
using spinlocks.

One must also be very careful to avoid race conditions with timer deletion. Con-
sider a situation in which a module’s timer function is run on one processor while
a related event (a file is closed or the module is removed) happens on another.
The result could be the timer function expecting a situation that is no longer valid,
resulting in a system crash. To avoid this kind of race, your module should use
del_timer_sync instead of del_timer. If the timer function can restart the timer itself
(a common pattern), you should also have a “stop timer” flag that you set before
calling del_timer_sync. The timer function should then check that flag and not
reschedule itself with add_timer if the flag has been set.

Another pattern that can cause race conditions is modifying timers by deleting
them with del_timer, then creating a new one with add_timer. 1t is better, in this
situation, to simply use mod_timer to make the necessary change.

203



22 June 2001 16:37

Chapter 6: Flow of Time

Backward Compatibility

Task queues and timing issues have remained relatively constant over the years.
Nonetheless, a few things have changed and must be kept in mind.

The functions sleep_on_timeout, interruptible_sleep_on_timeout, and sched-
ule_timeout were all added for the 2.2 kernel. In the 2.0 days, timeouts were han-
dled with a variable (called timeout) in the task structure. As a result, code that
now makes a call like

interruptible_sleep_on_timeout (my_gueue, timeout);
used to be implemented as

current->timeout = jiffies + timeout;
interruptible_sleep_on (my_gueue) ;

The sysdep.h header recreates schedule_timeout for pre-2.4 kernels so that you can
use the new syntax and run on 2.0 and 2.2:

extern inline void schedule_timeout (int timeout)

{

current->timeout = jiffies + timeout;
current->state = TASK_INTERRUPTIBLE;
schedule() ;

current->timeout = 0;

}

In 2.0, there were a couple of additional functions for putting functions into task
queues. queue_task_irg could be called instead of queue_task in situations in
which interrupts were disabled, yielding a (very) small performance benefit.
queue_task_irg_off is even faster, but does not function properly in situations in
which the task is already queued or is running, and can thus only be used where
those conditions are guaranteed not to occur. Neither of these two functions pro-
vided much in the way of performance benefits, and they were removed in kernel
2.1.30. Using queue_task in all cases works with all kernel versions. (It is worth
noting, though, that queue_task had a return type of void in 2.2 and prior ker-
nels.)

Prior to 2.4, the schedule_task function and associated keventd process did not
exist. Instead, another predefined task queue, tq_scheduler, was provided.
Tasks placed in tg_scheduler were run in the schedule function, and thus
always ran in process context. The actual process whose context would be used
was always different, however; it was whatever process was being scheduled on
the CPU at the time. tg_scheduler typically had larger latencies, especially for
tasks that resubmitted themselves. sysdep.bh provides the following implementation
for schedule_task on 2.0 and 2.2 systems:

204



22 June 2001 16:37

Quick Reference

extern inline int schedule_task(struct tg struct *task)
{

queue_task (task, &tg scheduler);

return 1;

}

As has been mentioned, the 2.3 development series added the tasklet mechanism;
before, only task queues were available for “immediate deferred” execution. The
bottom-half subsystem was implemented differently, though most of the changes
are not visible to driver writers. We didn’t emulate tasklets for older kernels in sys-
dep.b because they are not strictly needed for driver operation; if you want to be
backward compatible you'll need to either write your own emulation or use task
queues instead.

The in_interrupt function did not exist in Linux 2.0. Instead, a global variable
intr_count kept track of the number of interrupt handlers running. Querying
intr_count is semantically the same as calling in_interrupt, so compatibility is
easily implemented in sysdep.b.

The del_timer_sync function did not exist prior to development kernel 2.4.0-test2.
The usual sysdep.h header defines a minimal replacement when you build against
older kernel headers. Kernel version 2.0 didn’t have mod_timer, either. This gap is
also filled by our compatibility header.

Quick Reference
This chapter introduced the following symbols:

#include <linux/param.h>
HZ The HZ symbol specifies the number of clock ticks generated per second.

#include <linux/sched.h>

volatile unsigned long jiffies
The jiffies variable is incremented once for each clock tick; thus, it’s incre-
mented HZ times per second.

#include <asm/msr.h>

rdtsc (low,high) ;

rdtscl (low) ;
Read the timestamp counter or its lower half. The header and macros are spe-
cific to PC-class processors; other platforms may need asm constructs to
achieve similar results.

extern struct timeval xtime;
The current time, as calculated at the last timer tick.

205



22 June 2001 16:37

Chapter 6: Flow of Time

#include <linux/time.h>

void do_gettimeofday (struct timeval *tv);

void get_fast_time(struct timeval *tv);
The functions return the current time; the former is very high resolution, the
latter may be faster while giving coarser resolution.

#include <linux/delay.h>

void udelay (unsigned long usecs) ;

void mdelay (unsigned long msecs) ;
The functions introduce delays of an integer number of microseconds and mil-
liseconds. The former should be used to wait for no longer than one millisec-
ond; the latter should be used with extreme care because these delays are
both busy-loops.

int in_interrupt();
Returns nonzero if the processor is currently running in interrupt mode.

#include <linux/tqueue.h>
DECLARE_TASK_QUEUE (variablename) ;
The macro declares a new variable and initializes it.

void queue_task(struct tg struct *task, task_queue *list);
The function registers a task for later execution.

void run_task_gqueue(task_queue *list);
This function consumes a task queue.

task_queue tqg_immediate, tqg _timer;
These predefined task queues are run as soon as possible (for tq_immedi-
ate), or after each timer tick (for tg_timer).

int schedule_task(struct tg _struct *task);
Schedules a task to be run on the scheduler queue.

#include <linux/interrupt.h>

DECLARE_TASKLET (name, function, data)

DECLARE_TASKLET_DISABLED (name, function, data)
Declare a tasklet structure that will call the given function (passing it the given
unsigned long data) when the tasklet is executed. The second form initial-
izes the tasklet to a disabled state, keeping it from running until it is explicitly
enabled.

void tasklet_schedule(struct tasklet_struct *tasklet);
Schedules the given tasklet for running. If the tasklet is enabled, it will be run
shortly on the same CPU that ran the first call to tasklet_schedule.

206



22 June 2001 16:37

Quick Reference

tasklet_enable(struct tasklet_struct *tasklet);
tasklet_disable(struct tasklet_struct *tasklet);
These functions respectively enable and disable the given tasklet. A disabled
tasklet can be scheduled, but will not run until it has been enabled again.

void tasklet_kill (struct tasklet_struct *tasklet);
Causes an “infinitely rescheduling” tasklet to cease execution. This function
can block and may not be called in interrupt time.

#include <linux/timer.h>
vold init_timer (struct timer_list * timer);
This function initializes a newly allocated timer.

volid add_timer (struct timer_ list * timer);
This function inserts the timer into the global list of pending timers.

int mod_timer (struct timer_list *timer, unsigned long
expires) ;
This function is used to change the expiration time of an already scheduled
timer structure.

int del_timer (struct timer_list * timer);
del_timer removes a timer from the list of pending timers. If the timer was
actually queued, del_timer returns 1; otherwise, it returns 0.

int del_timer_sync(struct timer_list *timer);
This function is similar to del_timer, but guarantees that the function is not
currently running on other CPUs.

207



