
CHAPTER TEN

JUDICIOUS USE OF
DATA TYPES

Befor e we go on to more advanced topics, we need to stop for a quick note on
portability issues. Modern versions of the Linux kernel are highly portable, running
on several very differ ent architectur es. Given the multiplatform natur e of Linux,
drivers intended for serious use should be portable as well.

But a core issue with kernel code is being able both to access data items of
known length (for example, filesystem data structures or registers on device
boards) and to exploit the capabilities of differ ent pr ocessors (32-bit and 64-bit
architectur es, and possibly 16 bit as well).

Several of the problems encountered by kernel developers while porting x86 code
to new architectur es have been related to incorrect data typing. Adherence to strict
data typing and compiling with the -Wall -Wstrict-prototypes flags can prevent
most bugs.

Data types used by kernel data are divided into three main classes: standard C
types such as int, explicitly sized types such as u32, and types used for specific
ker nel objects, such as pid_t. We are going to see when and how each of the
thr ee typing classes should be used. The final sections of the chapter talk about
some other typical problems you might run into when porting driver code from
the x86 to other platforms, and introduce the generalized support for linked lists
exported by recent kernel headers.

If you follow the guidelines we provide, your driver should compile and run even
on platforms on which you are unable to test it.

Use of Standard C Types
Although most programmers are accustomed to freely using standard types like
int and long, writing device drivers requir es some care to avoid typing conflicts
and obscure bugs.

293

22 June 2001 16:40

Chapter 10: Judicious Use of Data Types

The problem is that you can’t use the standard types when you need ‘‘a two-byte
filler’’ or ‘‘something repr esenting a four-byte string’’ because the normal C data
types are not the same size on all architectur es. To show the data size of the vari-
ous C types, the datasize pr ogram has been included in the sample files provided
on the O’Reilly FTP site, in the directory misc-pr ogs. This is a sample run of the
pr ogram on a PC (the last four types shown are intr oduced in the next section):

morgana% misc-progs/datasize
arch Size: char shor int long ptr long-long u8 u16 u32 u64
i686 1 2 4 4 4 8 1 2 4 8

The program can be used to show that long integers and pointers feature a dif fer-
ent size on 64-bit platforms, as demonstrated by running the program on differ ent
Linux computers:

arch Size: char shor int long ptr long-long u8 u16 u32 u64
i386 1 2 4 4 4 8 1 2 4 8
alpha 1 2 4 8 8 8 1 2 4 8
armv4l 1 2 4 4 4 8 1 2 4 8
ia64 1 2 4 8 8 8 1 2 4 8
m68k 1 2 4 4 4 8 1 2 4 8
mips 1 2 4 4 4 8 1 2 4 8
ppc 1 2 4 4 4 8 1 2 4 8
sparc 1 2 4 4 4 8 1 2 4 8
sparc64 1 2 4 4 4 8 1 2 4 8

It’s interesting to note that the user space of Linux-spar c64 runs 32-bit code, so
pointers are 32 bits wide in user space, even though they are 64 bits wide in ker-
nel space. This can be verified by loading the kdatasize module (available in the
dir ectory misc-modules within the sample files). The module reports size informa-
tion at load time using printk and retur ns an error (so there’s no need to unload
it):

kernel: arch Size: char short int long ptr long-long u8 u16 u32 u64
kernel: sparc64 1 2 4 8 8 8 1 2 4 8

Although you must be careful when mixing differ ent data types, sometimes there
ar e good reasons to do so. One such situation is for memory addresses, which are
special as far as the kernel is concerned. Although conceptually addresses are
pointers, memory administration is better accomplished by using an unsigned inte-
ger type; the kernel treats physical memory like a huge array, and a memory
addr ess is just an index into the array. Furthermor e, a pointer is easily derefer-
enced; when dealing directly with memory addresses you almost never want to
der efer ence them in this manner. Using an integer type prevents this derefer enc-
ing, thus avoiding bugs. Therefor e, addr esses in the kernel are unsigned long,
exploiting the fact that pointers and long integers are always the same size, at
least on all the platforms currently supported by Linux.

294

22 June 2001 16:40

The C99 standard defines the intptr_t and uintptr_t types for an integer
variable which can hold a pointer value. These types are almost unused in the 2.4
ker nel, but it would not be surprising to see them show up more often as a result
of future development work.

Assigning an Explicit Size to Data Items
Sometimes kernel code requir es data items of a specific size, either to match pre-
defined binary structures* or to align data within structures by inserting ‘‘filler’’
fields (but please refer to “Data Alignment” later in this chapter for information
about alignment issues).

The kernel offers the following data types to use whenever you need to know the
size of your data. All the types are declar ed in <asm/types.h>, which in turn is
included by <linux/types.h>:

u8; /* unsigned byte (8 bits) */
u16; /* unsigned word (16 bits) */
u32; /* unsigned 32-bit value */
u64; /* unsigned 64-bit value */

These data types are accessible only from kernel code (i.e., __KERNEL_ _ must
be defined before including <linux/types.h>). The corresponding signed
types exist, but are rar ely needed; just replace u with s in the name if you need
them.

If a user-space program needs to use these types, it can prefix the names with a
double underscore: __u8 and the other types are defined independent of
__KERNEL_ _. If, for example, a driver needs to exchange binary structures with
a program running in user space by means of ioctl, the header files should declare
32-bit fields in the structures as __u32.

It’s important to remember that these types are Linux specific, and using them hin-
ders porting software to other Unix flavors. Systems with recent compilers will
support the C99-standard types, such as uint8_t and uint32_t; when possible,
those types should be used in favor of the Linux-specific variety. If your code must
work with 2.0 kernels, however, use of these types will not be possible (since only
older compilers work with 2.0).

You might also note that sometimes the kernel uses conventional types, such as
unsigned int, for items whose dimension is architectur e independent. This is
usually done for backward compatibility. When u32 and friends were intr oduced
in version 1.1.67, the developers couldn’t change existing data structures to the

* This happens when reading partition tables, when executing a binary file, or when
decoding a network packet.

Assigning an Explicit Size to Data Items

295

22 June 2001 16:40

Chapter 10: Judicious Use of Data Types

new types because the compiler issues a warning when there is a type mismatch
between the structure field and the value being assigned to it.* Linus didn’t expect
the OS he wrote for his own use to become multiplatform; as a result, old struc-
tur es ar e sometimes loosely typed.

Interface-Specific Types
Most of the commonly used data types in the kernel have their own typedef
statements, thus preventing any portability problems. For example, a process iden-
tifier (pid) is usually pid_t instead of int. Using pid_t masks any possible dif-
fer ence in the actual data typing. We use the expression inter face-specific to refer
to a type defined by a library in order to provide an interface to a specific data
structur e.

Even when no interface-specific type is defined, it’s always important to use the
pr oper data type in a way consistent with the rest of the kernel. A jiffy count, for
instance, is always unsigned long, independent of its actual size, so the
unsigned long type should always be used when working with jiffies. In this
section we concentrate on use of ‘‘_t’’ types.

The complete list of _t types appears in <linux/types.h>, but the list is rarely
useful. When you need a specific type, you’ll find it in the prototype of the func-
tions you need to call or in the data structures you use.

Whenever your driver uses functions that requir e such ‘‘custom’’ types and you
don’t follow the convention, the compiler issues a warning; if you use the -Wall
compiler flag and are car eful to remove all the warnings, you can feel confident
that your code is portable.

The main problem with _t data items is that when you need to print them, it’s not
always easy to choose the right printk or printf for mat, and warnings you resolve
on one architectur e reappear on another. For example, how would you print a
size_t, which is unsigned long on some platforms and unsigned int on
some others?

Whenever you need to print some interface-specific data, the best way to do it is
by casting the value to the biggest possible type (usually long or unsigned
long) and then printing it through the corresponding format. This kind of tweak-
ing won’t generate errors or warnings because the format matches the type, and
you won’t lose data bits because the cast is either a null operation or an extension
of the item to a bigger data type.

In practice, the data items we’re talking about aren’t usually meant to be printed,
so the issue applies only to debugging messages. Most often, the code needs only

* As a matter of fact, the compiler signals type inconsistencies even if the two types are just
dif ferent names for the same object, like unsigned long and u32 on the PC.

296

22 June 2001 16:40

to store and compare the interface-specific types, in addition to passing them as
arguments to library or kernel functions.

Although _t types are the correct solution for most situations, sometimes the right
type doesn’t exist. This happens for some old interfaces that haven’t yet been
cleaned up.

The one ambiguous point we’ve found in the kernel headers is data typing for I/O
functions, which is loosely defined (see the section ‘‘Platform Dependencies’’ in
Chapter 8). The loose typing is mainly there for historical reasons, but it can create
pr oblems when writing code. For example, one can get into trouble by swapping
the arguments to functions like outb; if ther e wer e a port_t type, the compiler
would find this type of error.

Other Por tability Issues
In addition to data typing, there are a few other software issues to keep in mind
when writing a driver if you want it to be portable across Linux platforms.

A general rule is to be suspicious of explicit constant values. Usually the code has
been parameterized using prepr ocessor macr os. This section lists the most impor-
tant portability problems. Whenever you encounter other values that have been
parameterized, you’ll be able to find hints in the header files and in the device
drivers distributed with the official kernel.

Time Intervals
When dealing with time intervals, don’t assume that there are 100 jiffies per sec-
ond. Although this is currently true for Linux-x86, not every Linux platform runs at
100 Hz (as of 2.4 you find values ranging from 20 to 1200, although 20 is only
used in the IA-64 simulator). The assumption can be false even for the x86 if you
play with the HZ value (as some people do), and nobody knows what will happen
in future ker nels. Whenever you calculate time intervals using jiffies, scale your
times using HZ (the number of timer interrupts per second). For example, to check
against a timeout of half a second, compare the elapsed time against HZ/2. Mor e
generally, the number of jiffies corresponding to msec milliseconds is always
msec*HZ/1000. This detail had to be fixed in many network drivers when port-
ing them to the Alpha; some of them didn’t work on that platform because they
assumed HZ to be 100.

Page Size
When playing games with memory, remember that a memory page is PAGE_SIZE
bytes, not 4 KB. Assuming that the page size is 4 KB and hard-coding the value is
a common error among PC programmers — instead, supported platforms show
page sizes from 4 KB to 64 KB, and sometimes they differ between differ ent

Other Por tability Issues

297

22 June 2001 16:40

Chapter 10: Judicious Use of Data Types

implementations of the same platform. The relevant macros are PAGE_SIZE and
PAGE_SHIFT. The latter contains the number of bits to shift an address to get its
page number. The number currently is 12 or greater, for 4 KB and bigger pages.
The macros are defined in <asm/page.h>; user-space programs can use getpage-
size if they ever need the information.

Let’s look at a nontrivial situation. If a driver needs 16 KB for temporary data, it
shouldn’t specify an order of 2 to get_fr ee_pages. You need a portable solution.
Using an array of #ifdef conditionals may work, but it only accounts for plat-
for ms you care to list and would break on other architectur es, such as one that
might be supported in the future. We suggest that you use this code instead:

int order = (14 - PAGE_SHIFT > 0) ? 14 - PAGE_SHIFT : 0;
buf = get_free_pages(GFP_KERNEL, order);

The solution depends on the knowledge that 16 KB is 1<<14. The quotient of two
numbers is the differ ence of their logarithms (orders), and both 14 and
PAGE_SHIFT ar e orders. The value of order is calculated at compile time, and
the implementation shown is a safe way to allocate memory for any power of two,
independent of PAGE_SIZE.

Byte Order
Be careful not to make assumptions about byte ordering. Whereas the PC stores
multibyte values low-byte first (little end first, thus little-endian), most high-level
platfor ms work the other way (big-endian). Modern processors can operate in
either mode, but most of them prefer to work in big-endian mode; support for lit-
tle-endian memory access has been added to interoperate with PC data and Linux
usually prefers to run in the native processor mode. Whenever possible, your code
should be written such that it does not care about byte ordering in the data it
manipulates. However, sometimes a driver needs to build an integer number out
of single bytes or do the opposite.

You’ll need to deal with endianness when you fill in network packet headers, for
example, or when you are dealing with a peripheral that operates in a specific
byte ordering mode. In that case, the code should include <asm/byteorder.h>
and should check whether __BIG_ENDIAN or __LITTLE_ENDIAN is defined by
the header.

You could code a bunch of #ifdef __LITTLE_ENDIAN conditionals, but there
is a better way. The Linux kernel defines a set of macros that handle conversions
between the processor’s byte ordering and that of the data you need to store or
load in a specific byte order. For example:

u32 __cpu_to_le32 (u32);
u32 __le32_to_cpu (u32);

These two macros convert a value from whatever the CPU uses to an unsigned, lit-
tle-endian, 32-bit quantity and back. They work whether your CPU is big-endian

298

22 June 2001 16:40

or little-endian, and, for that matter, whether it is a 32-bit processor or not. They
retur n their argument unchanged in cases where ther e is no work to be done. Use
of these macros makes it easy to write portable code without having to use a lot of
conditional compilation constructs.

Ther e ar e dozens of similar routines; you can see the full list in <linux/byte-
order/big_endian.h> and <linux/byteorder/little_endian.h>.
After a while, the pattern is not hard to follow. _ _be64_to_cpu converts an
unsigned, big-endian, 64-bit value to the internal CPU repr esentation.
_ _le16_to_cpus, instead, handles signed, little-endian, 16-bit quantities. When deal-
ing with pointers, you can also use functions like _ _cpu_to_le32p, which take a
pointer to the value to be converted rather than the value itself. See the include
file for the rest.

Not all Linux versions defined all the macros that deal with byte ordering. In par-
ticular, the linux/byteor der dir ectory appear ed in version 2.1.72 to make order in
the various <asm/byteorder.h> files and remove duplicate definitions. If you
use our sysdep.h, you’ll be able to use all of the macros available in Linux 2.4
when compiling code for 2.0 or 2.2.

Data Alignment
The last problem worth considering when writing portable code is how to access
unaligned data—for example, how to read a four-byte value stored at an address
that isn’t a multiple of four bytes. PC users often access unaligned data items, but
few architectur es per mit it. Most modern architectur es generate an exception every
time the program tries unaligned data transfers; data transfer is handled by the
exception handler, with a great perfor mance penalty. If you need to access
unaligned data, you should use the following macros:

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

These macros are typeless and work for every data item, whether it’s one, two,
four, or eight bytes long. They are defined with any kernel version.

Another issue related to alignment is portability of data structures across platforms.
The same data structure (as defined in the C-language source file) can be com-
piled differ ently on differ ent platfor ms. The compiler arranges structure fields to
be aligned according to conventions that differ from platform to platfor m. At least
in theory, the compiler can even reorder structure fields in order to optimize mem-
ory usage.*

* Field reordering doesn’t happen in currently supported architectur es because it could
br eak inter operability with existing code, but a new architectur e may define field reorder-
ing rules for structures with holes due to alignment restrictions.

Other Por tability Issues

299

22 June 2001 16:40

Chapter 10: Judicious Use of Data Types

In order to write data structures for data items that can be moved across architec-
tur es, you should always enforce natural alignment of the data items in addition to
standardizing on a specific endianness. Natural alignment means storing data
items at an address that is a multiple of their size (for instance, 8-byte items go in
an address multiple of 8). To enforce natural alignment while preventing the com-
piler from moving fields around, you should use filler fields that avoid leaving
holes in the data structure.

To show how alignment is enforced by the compiler, the dataalign pr ogram is dis-
tributed in the misc-pr ogs dir ectory of the sample code, and an equivalent
kdataalign module is part of misc-modules. This is the output of the program on
several platforms and the output of the module on the SPARC64:

arch Align: char short int long ptr long-long u8 u16 u32 u64
i386 1 2 4 4 4 4 1 2 4 4
i686 1 2 4 4 4 4 1 2 4 4
alpha 1 2 4 8 8 8 1 2 4 8
armv4l 1 2 4 4 4 4 1 2 4 4
ia64 1 2 4 8 8 8 1 2 4 8
mips 1 2 4 4 4 8 1 2 4 8
ppc 1 2 4 4 4 8 1 2 4 8
sparc 1 2 4 4 4 8 1 2 4 8
sparc64 1 2 4 4 4 8 1 2 4 8

kernel: arch Align: char short int long ptr long-long u8 u16 u32 u64
kernel: sparc64 1 2 4 8 8 8 1 2 4 8

It’s interesting to note that not all platforms align 64-bit values on 64-bit bound-
aries, so you’ll need filler fields to enforce alignment and ensure portability.

Linked Lists
Operating system kernels, like many other programs, often need to maintain lists
of data structures. The Linux kernel has, at times, been host to several linked list
implementations at the same time. To reduce the amount of duplicated code, the
ker nel developers have created a standard implementation of circular, doubly-
linked lists; others needing to manipulate lists are encouraged to use this facility,
intr oduced in version 2.1.45 of the kernel.

To use the list mechanism, your driver must include the file <linux/list.h>.
This file defines a simple structure of type list_head:

struct list_head {
struct list_head *next, *prev;

};

Linked lists used in real code are almost invariably made up of some type of struc-
tur e, each one describing one entry in the list. To use the Linux list facility in your

300

22 June 2001 16:40

code, you need only embed a list_head inside the structures that make up the
list. If your driver maintains a list of things to do, say, its declaration would look
something like this:

struct todo_struct {
struct list_head list;
int priority; /* driver specific */
/* ... add other driver-specific fields */

};

The head of the list must be a standalone list_head structur e. List heads must
be initialized prior to use with the INIT_LIST_HEAD macr o. A ‘‘things to do’’ list
head could be declared and initialized with:

struct list_head todo_list;

INIT_LIST_HEAD(&todo_list);

Alter natively, lists can be initialized at compile time as follows:

LIST_HEAD(todo_list);

Several functions are defined in <linux/list.h> that work with lists:

list_add(struct list_head *new, struct list_head *head);
This function adds the new entry immediately after the list head—nor mally at
the beginning of the list. It can thus be used to build stacks. Note, however,
that the head need not be the nominal head of the list; if you pass a
list_head structur e that happens to be in the middle of the list somewhere,
the new entry will go immediately after it. Since Linux lists are circular, the
head of the list is not generally differ ent fr om any other entry.

list_add_tail(struct list_head *new, struct list_head
*head);

Add a new entry just before the given list head—at the end of the list, in other
words. list_add_tail can thus be used to build first-in first-out queues.

list_del(struct list_head *entry);
The given entry is removed from the list.

list_empty(struct list_head *head);
Retur ns a nonzer o value if the given list is empty.

list_splice(struct list_head *list, struct list_head *head);
This function joins two lists by inserting list immediately after head.

The list_head structur es ar e good for implementing a list of like structures, but
the invoking program is usually more inter ested in the larger structures that make

Linked Lists

301

22 June 2001 16:40

Chapter 10: Judicious Use of Data Types

up the list as a whole. A macro, list_entry, is provided that will map a list_head
structur e pointer back into a pointer to the structure that contains it. It is invoked
as follows:

list_entry(struct list_head *ptr, type_of_struct, field_name);

wher e ptr is a pointer to the struct list_head being used,
type_of_struct is the type of the structure containing the ptr, and
field_name is the name of the list field within the structure. In our
todo_struct structur e fr om befor e, the list field is called simply list. Thus, we
would turn a list entry into its containing structure with a line like this:

struct todo_struct *todo_ptr =
list_entry(listptr, struct todo_struct, list);

The list_entry macr o takes a little getting used to, but is not that hard to use.

The traversal of linked lists is easy: one need only follow the prev and next
pointers. As an example, suppose we want to keep the list of todo_struct
items sorted in descending priority order. A function to add a new entry would
look something like this:

void todo_add_entry(struct todo_struct *new)
{

struct list_head *ptr;
struct todo_struct *entry;

for (ptr = todo_list.next; ptr != &todo_list; ptr = ptr->next) {
entry = list_entry(ptr, struct todo_struct, list);
if (entry->priority < new->priority) {

list_add_tail(&new->list, ptr);
return;

}
}
list_add_tail(&new->list, &todo_struct)

}

The <linux/list.h> file also defines a macro list_for_each that expands to the
for loop used in this code. As you may suspect, you must be careful when modi-
fying the list while traversing it.

Figur e 10-1 shows how the simple struct list_head is used to maintain a list
of data structures.

Although not all features exported by the list.h as it appears in Linux 2.4 are avail-
able with older kernels, our sysdep.h fills the gap by declaring all macros and
functions for use in older kernels.

302

22 June 2001 16:40

Lists in
<linux/list.h>

Effects of the list_entry macro

An empty list

A list head with a two-item list

struct list_head

nextprev

A custom structure
including a list_head

Figur e 10-1. The list_head data structure

Quick Reference
The following symbols were intr oduced in this chapter.

#include <linux/types.h>
typedef u8;
typedef u16;
typedef u32;
typedef u64;

These types are guaranteed to be 8-, 16-, 32-, and 64-bit unsigned integer val-
ues. The equivalent signed types exist as well. In user space, you can refer to
the types as __u8, __u16, and so forth.

#include <asm/page.h>
PAGE_SIZE
PAGE_SHIFT

These symbols define the number of bytes per page for the current architec-
tur e and the number of bits in the page offset (12 for 4-KB pages and 13 for
8-KB pages).

Quick Reference

303

22 June 2001 16:40

Chapter 10: Judicious Use of Data Types

#include <asm/byteorder.h>
__LITTLE_ENDIAN
__BIG_ENDIAN

Only one of the two symbols is defined, depending on the architectur e.

#include <asm/byteorder.h>
u32 __cpu_to_le32 (u32);
u32 __le32_to_cpu (u32);

Functions for converting between known byte orders and that of the proces-
sor. Ther e ar e mor e than 60 such functions; see the various files in
include/linux/byteor der/ for a full list and the ways in which they are defined.

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

Some architectur es need to protect unaligned data access using these macros.
The macros expand to normal pointer derefer encing for architectur es that per-
mit you to access unaligned data.

#include <linux/list.h>
list_add(struct list_head *new, struct list_head *head);
list_add_tail(struct list_head *new, struct list_head

*head);
list_del(struct list_head *entry);
list_empty(struct list_head *head);
list_entry(entry, type, member);
list_splice(struct list_head *list, struct list_head *head);

Functions for manipulating circular, doubly linked lists.

304

22 June 2001 16:40

